Ein Dirigent des Abbaus

Die Zellen eines Organismus gehen sparsam mit ihren Ressourcen um. So werden beispielsweise ausgediente oder geschädigte Proteine effizient in ihre Bestandteile zerlegt und wiederverwertet. Voraussetzung für den Abbau ist, dass das verbrauchte Protein mit einem weiteren Protein, dem Ubiquitin, verknüpft wird bevor es der zelluläre „Schredder“, das Proteasom, in Einzelbestandteile zerlegt. Bilden verschiedene Proteine einen Protein-Komplex, so ist es häufig erforderlich, dass ein Protein dieses Verbundes dem Proteasom zugeführt wird und die übrigen Proteine von der Zelle weiter genutzt werden können. Einen wichtigen Beitrag zur Aufklärung des für eine Zelle lebensnotwendigen Mechanismus liefern jetzt Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München. Mitarbeiter aus der Arbeitsgruppe von Prof. Stefan Jentsch berichten über ihre Entdeckung in der neuesten Ausgabe der Zeitschrift Cell (Cell, 107, 667-677, 2001).

Vorgänge in der Zelle werden durch fein abgestimmte Mechanismen reguliert. Damit aus einer Zelle ein Organismus entsteht und auch leben kann, muss beispielsweise die genetische Information, die in der DNA gespeichert ist, kontrolliert abgelesen werden. Dazu benötigt die Zelle eine Vielzahl verschiedener Proteine. Das Abschreiben der DNA verläuft in tierischen und pflanzlichen Zellen und in Mikroorganismen ähnlich. Stefan Jentsch und seine Mitarbeiter untersuchen die Regulation an Bäckerhefe, und können so Erkenntnisse auch zur Regulation in Zellen von höheren Organismen beitragen. Ganz besonders wichtig für diesen Vorgang sind die so genannten Transkriptionsfaktoren, die bestimmen, wann und unter welchen Bedingungen die DNA abgelesen wird. Diese „Abschreibe-Moleküle“ selbst unterliegen einer strengen Kontrolle: sowohl das An- wie auch das Abschalten dieser Proteine darf nur zu genau bestimmten Zeitpunkten erfolgen.

Um nicht fortwährend das Ablesen eines DNA-Abschnitts zu fördern, wird beispielsweise der Transkriptionsfaktor SPT23 von der DNA, die sich im Zellkern befindet, räumlich getrennt gehalten: Er ist außerhalb der Zellkerns an einer Membran verankert. Wird SPT23 aber benötigt, so wird er mit einem anderen Protein, dem Ubiquitin, verknüpft und dem Proteasom zugeführt.

Im Unterschied zur bisher bekannten Arbeitsweise des Proteasom-„Schredders“, Proteine zu zerhäckseln, haben die Martinsrieder Wissenschaftler bei SPT23 bereits vor einiger Zeit gefunden, dass nur der hintere Teil des Proteins, der den Transkriptionsfaktor an der Membran verankert, zerhäckselt und abgebaut wird und der vordere Teil des Proteins frei wird und somit in den Zellkern gelangen kann, um das Ablesen von DNA-Abschnitten einzuleiten (Cell 102, 577-586, 2000). Das „Ubiquitin-Proteasom-Team“ ist also nicht nur am Abbau sondern auch an der Aktivierung von Proteinen beteiligt. In ihren neuesten Studien stießen die Wissenschaftler auf eine kleine zelluläre „Maschine“, die gezielt ein mit Ubiquitin verknüpftes Protein aus einem Protein-Verbund zu lösen vermag.

Um zu verhindern, dass das Proteasom das gesamte SPT23-Molekül zerhäckselt, geht der Transkriptionsfaktor einen engen Verbund mit einem weiteren SPT23 Molekül ein. Dieser Verbund ist gerade im vorderen Teil von SPT23 so stabil, dass das Proteasom beim Zerkleinern sich nur mit dem hinteren Abschnitt des Proteins begnügen muss. Ein verkürztes mit Ubiquitin verknüpftes SPT23-Molekül bildet mit einem weiteren unverkürzten SPT23-Molekül einen Komplex, das vom Proteasom-Abbau komplett verschont bleibt. Dies ähnelt sehr einer Situation, wie sie vielfach in einer Zelle vorkommt: Ein mit Ubiquitin verknüpftes Protein in einem Proteinverband soll abgebaut werden, der Rest der Proteine des Verbandes sollen jedoch verschont bleiben.

Michael Rape, ein Doktorand der Arbeitsgruppe, konnte zeigen, dass für das gezielte Herauslösen des mit Ubiquitin verknüpften Proteins, in diesem Falle des verkürzten SPT23 Transkriptionsfaktors, eine komplexe Maschine benötigt wird, das die Arbeitsgruppe „CDC48UFD1/NPL4“ genannt haben. Diese Maschine bindet gezielt an Proteine, die mit Ubiquitin verknüpft sind, führt ähnlich wie die Blende im Fotoapparat eine Drehbewegung aus, und entwindet so das mit Ubiquitin verknüpfte Protein von seinem Partner. Somit von seinem Partner befreit, kann SPT23 in den Zellkern wandern. Die Funktion von CDC48UFD1/NPL4 ist nicht auf diesen speziellen Fall in der Bäckerhefe beschränkt. Wie die Forscher zeigen konnten, scheint auch bei anderen Prozessen, bei denen mit Ubiquitin verknüpfte Proteine aus Proteinverbänden herausgelöst werden müssen, diese Maschine benötigt zu werden.

Die Wissenschaftler des Max-Planck-Instituts für Biochemie widmen sich in ihrer weiteren Forschung der Frage, wie häufig die von ihnen gefundene Maschine als „Dirigent des Abbaus“ von Proteinen eingesetzt wird.

Media Contact

Eva-Maria Diehl idw

Weitere Informationen:

http://www.biochem.mpg.de/jentsch/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…