Den dicksten Rauch durchdringen: Roboter unterstützen Feuerwehr


Je dichter Rauch und Dampf werden, desto weniger sehen menschliche Augen. Immer häufiger helfen Sensoren Feuerwehrleuten in solchen Fällen, ihr Rettungsgerät zum Ziel zu steuern – insbesondere die Feuerwehrroboter: Sie kommen immer dann zum Einsatz, wenn es für Menschen zu gefährlich wird.

Bei Feuern in Industrieanlagen, bei Tunnel- und Flugzeugbränden oder bei Gefahrgutunfällen auf Straße oder Schiene gibt es immer wieder kritische Bereiche, in die Menschen gar nicht oder nur unter Gefahr für Gesundheit oder Leben vordringen können. Sei es, um wichtige Informationen über die Einsatzstelle zu bekommen, Verletzte zu finden und zu bergen oder gezielte Maßnahmen vor Ort einzuleiten. In solchen Fällen kommen immer häufiger Roboter zum Einsatz. Aus sicherem Abstand ferngesteuert und mit den jeweils erforderlichen Werkzeugen ausgerüstet, dringen sie in Gefahrenbereiche vor, die sonst unzugänglich wären. »FIREROB« von Iveco Magirus Brandschutztechnik GmbH, Ulm, ist ein solcher Roboter. Er wurde Ende Juni auf der Messe »Interschutz« in Augsburg der Öffentlichkeit vorgestellt.

Sein Sensorsystem zur Objekterfassung in verrauchten Umgebungen haben Ingenieure des Fraunhofer IPA unter der Projektleitung von Hendrik Rust entwickelt. Gemeinsam mit Industriepartnern und gefördert vom Wirtschaftsministerium Baden-Württemberg bauten sie auch den Prototyp eines Roboters zur Brandbekämpfung und den eines Roboters zur technischen Hilfeleistung. Den Aufbau eines Hitzeschutzes sowie die technische Ausstattung zur Brandbekämpfung übernahmen der Feuerwehrfahrzeughersteller Iveco Magirus Brandschutztechnik GmbH, Ulm, und die Firma Telerob – Gesellschaft für Fernhantierungstechnik, Ostfildern. Die Anwendungstechnik für die technische Hilfeleistung entwickelte die BASF-Werkfeuerwehr, Ludwigshafen. Integriert auf eine Telerob-Plattform entstand daraus ein Manipulatorfahrzeug, das die Werkfeuerwehr unter dem Namen »Robi« bereits im Einsatz testet.

»FIREROB« kann sowohl für Manipulationsaufgaben als auch zur Brandbekämpfung eingesetzt werden. Bei letzterer dient er »nur« als Zugfahrzeug. Zu löschen ist die Aufgabe der Fernlöschhaspel mit ihrem elektrisch betriebenem und fernsteuerbarem Feuerlöschmonitor. Der Roboter zieht sie zur Einsatzstelle. Dabei rollt sich entlang des zurückgelegten Weges Schlauch von der Haspel ab, der an seinem Ausganspunkt mit dem Löschfahrzeug verbunden ist. Am Einsatzort kuppelt der funkferngesteuerte Roboter die Haspel ab, sobald er sie so positioniert hat, daß der Löschmonitor mit seinem Wasserstrahl auf den Brandherd ausgerichtet ist. Unmittelbar dananch verläßt das Zugfahrzeug den Gefahrenbereich, um weitere Haspeln in Stellung zu bringen. Damit der Bediener den Roboter dort hin steuern kann, braucht er Informationen aus der Umgebung des Roboters. Bislang gab es jedoch keine Sensorsysteme am Markt, die Objekte auch in verrauchten Umgebungen erfassen und sich einfach und kostengünstig in teleoperierte Manipulatorfahrzeuge implementieren lassen.

Da die Umgebungen, in denen sich die Fahrzeuge bewegen, a priori nicht bekannt sind, bestehen besondere Anforderungen an die Umgebungsdatenerfassung und -auswertung. Der Bediener hat keinen Sichtkontakt zum Fahrzeug. Damit er die Fahrroute planen, Kollisionen vermeiden und, wenn nötig, Arbeiten duchführen lassen kann, muß das System für ihn alle Objekte erfassen – situativ angepaßt an die jeweiligen Aufgaben. Eine Infrarot- und eine CCD-Kamera liefern diese Bildinformationen. Ebenfalls mehrere Systeme bestimmen die Entfernung. Taktile Sensoren und temperaturunempfindliche Ultraschall-Sensoren helfen, Kollisionen zu vermeiden. Die technologisch interessantesten Verfahren sind ein eigens für diesen Einsatzfall entwickelter, preisgünstiger 3D-Radar-Scanner und ein neues, vom Fraunhofer IPA zum Patent angemeldetes Verfahren, das Distanzen mit Hilfe eines Wasserstrahls bestimmt. Ebenfalls zum Patent angemeldet ist ein Verfahren, das automatisch Feuer detektiert und laufend den Abstand und die Richtung zu ihm mißt. Mit diesen Daten richtet sich der Feuerlöschmonitor der Fernlöschhaspel auf sein Ziel aus.

Das entwickelte Sensorsystem ist für alle Fahrzeuge geeignet, die in verrauchter, vernebelter oder stark staubiger Umgebung navigieren müssen – aber auch für Meß- und Überwachungseinrichtungen, die unter ähnlichen Bedingungen arbeiten sollen: beispielsweise teleoperierte Roboter, die in Tunnelanlagen zum Einsatz kommen. Brennt es dort, können die Feuerwehrleute wegen der Hitze und des starken Rauchs weder zum Löschen noch zum Bergen von Menschen zur Einsatzstelle vordringen. Aktuelle Fälle haben gezeigt, daß die technischen Mittel dazu bislang fehlen. Entsprechende Robotersysteme könnten hier helfen.

Ihr Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dipl.-Ing. Hendrik Rust
Telefon: 0711/970-1043, Telefax: 0711/970-1008, E-Mail: rust@ipa.fhg.de

Media Contact

Dipl.-Ing. Michaela Neuner

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…