Super-Stahl für sichere Autos

Dehnbar wie Gummi: Sehr feine und gleichmäßige Körnchen (Kristallite) verleihen neuen Stählen "Superplastizität". Oben das ursprüngliche Werkstück, in der Mitte eine Gleichmaßdehnung um 850, unten die Bruchdehnung um 1025 Prozent. Bild: MaxPlanckForschung/MPI für Eisenforschung

Bei einem Unfall wirken enorme Kräfte auf Auto und Insassen ein. Indem sich der Motorraum verformt, fängt er einen großen Teil der Aufprallenergie ab und schützt dadurch die Fahrgastzelle. Die Karosserie muss dabei dehnbar und trotzdem fest sein. Zwei Eigenschaften, die sich eigentlich widersprechen. Wissenschaftler am Max-Planck-Institut für Eisenforschung in Düsseldorf haben jetzt aus einer Mischung aus Mangan, Silizium, Aluminium und natürlich Eisen einen neuartigen Stahl entwickelt, der beide Funktionen erfüllt.

Jedes Jahr ereignen sich in Deutschland mehr als 200 000 Autounfälle. Mit hohem technischem Aufwand arbeiten die Hersteller an neuen Technologien, die Fahrer und Mitfahrer besser schützen sollen. Neben der Fahrzeugkonstruktion spielt dabei der Karosseriestahl eine zentrale Rolle. Im Falle eines Zusammenstoßes muss dieser sehr dehnbar sein, um die Aufprallenergie in Verformung umzuwandeln, und darüber hinaus fest, um die Fahrgastzelle zu stabilisieren.

Am Max-Planck-Institut für Eisenforschung in Düsseldorf, einem gemeinsamen Forschungsinstitut des Verbandes der Deutschen Eisenhüttenleute (VDEh) und der Max-Planck-Gesellschaft, ist es Forschern mithilfe moderner Computer gestützter Methoden gelungen, einen solchen Stahl zu entwickeln. Bei einem Aufprall aktiviert der TWIP-Stahl (Twinning Induced Plasticity) seine Dehnungsreserve und beginnt sich zu verformen. Jeder Punkt des Stahls dehnt sich dabei nur ein bestimmtes Stück. Dann verfestigt er sich wieder und leitet den Rest der Energie an das umgebende Material weiter. Dadurch breitet sich die Energie gleichmäßig über die ganze Fläche des Metalls aus. Die Last des Aufpralls verteilt sich.

„Wir werden zukünftig Stähle haben, die eine sehr hohe Festigkeit aber auch ein hohes Verformungsvermögen haben, sodass die Insassen im Falle eines Crashs umfassend geschützt werden“, sagt Anke Rita Pyzalla, Direktorin am Max-Planck-Institut für Eisenforschung. Bereits in ein bis zwei Jahren sollen die ersten neuartigen Stahlkarosserien in die Kotflügel und die Seitentüren von Autos eingebaut werden. Diese Bereiche trifft es bei einem Unfall überdurchschnittlich häufig.

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…