Dem Geheimnis des Glasübergangs auf der Spur: Wissenschafter der TU Graz sind Wegbereiter für neue Hochleistungsmaterialien
Gläser sind im täglichen Leben eher als Trinkbehälter oder als flache Scheiben in Fenstern bekannt. Tatsächlich aber ist aus physikalischer Sicht die Gruppe der Gläser weit vielfältiger: Sie umfasst Festkörper mit außergewöhnlichen Eigenschaften, bei denen der flüssige Zustand eingefroren ist.
Physikern des Instituts für Materialphysik der TU Graz ist es nun in Zusammenarbeit mit deutschen und chinesischen Wissenschaftern gelungen, einen wichtigen Beitrag zur Aufklärung der Mechanismen des so genannten Glasübergangs – des Übergangs vom amorphen, also strukturlosen Festkörper in den Zustand der unterkühlten Schmelze – zu leisten.
Die renommierte amerikanischen Fachzeitschrift „Proceedings of the National Academy of Sciences“ veröffentlichte die Ergebnisse, die große Praxisrelevanz versprechen.
Ob für die Medizintechnik, Sportgeräte oder moderne Hochleistungsstähle: Immer mehr Metalle lassen sich in den amorphen Zustand bringen. Damit zählen sie zu den „metallischen Gläsern“, deren ungeordnete Strukturen außergewöhnliche mechanische und magnetische Eigenschaften besitzen sowie hohe Korrosionsbeständigkeit aufweisen. „Der so genannte Glasübergang in diesen Festkörpern ist von enormer Bedeutung für die Beschaffenheit der Materialien, Wissen über diesen Vorgang daher von zentraler Bedeutung für mögliche Anwendungen“, erläutert Projektleiter Wolfgang Sprengel vom Institut für Materialphysik der TU Graz.
„Beim Glasübergang ändern sich die mechanischen Materialeigenschaften rapide mit der Temperatur“, erklärt der Wissenschafter. „Aus unseren neuesten Untersuchungen können wir schließen, dass sich metallische Gläser in der Nähe des Glasübergangs ähnlich verhalten wie kristalline Metalle bei Erwärmung: Sie sind wesentlich von der Einführung freier atomarer Plätze bei höheren Temperaturen bestimmt, die bei Absenkung der Temperatur wieder verschwinden“, so Sprengel.
Ausgedehnt gemessenes Glas
Der Nachweis gelang den Forschern, die mit Wissenschaftern der Universitäten Beijing, Stuttgart und Ulm kooperieren, mit der „Methode der zeitdifferenziellen Dilatometrie“: „Darunter verstehen wir eine zeitabhängige Ausdehnungsmessung bei konstanter Temperatur nach raschen Temperaturwechseln, mit der wir Änderungen der Materialabmessungen bis in den Nanometerbereich bestimmen können“, so Sprengel, der die lasergestützte Messmethode am Institut für Materialphysik der TU Graz weiterentwickelt.
„Die Ergebnisse der Forschungsarbeit sind ein wichtiger Schritt für das Verständnis amorpher Materialien wie Quarzglas und Polymere und sind von großer Bedeutung für die Festkörper- und Materialphysik“, zeigt sich Institutsleiter Roland Würschum optimistisch. Die Arbeit wurde kürzlich in der renommierten amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS, Bd. 104 (2007), S. 12962) veröffentlicht und ist online unter http://www.pnas.org/cgi/content/short/104/32/12962 verfügbar.
Rückfragen:
Dr.rer.nat. Univ.-Doz. Wolfgang Sprengel
Institut für Materialphysik
Email: w.sprengel@TUGraz.at
Tel: +43 (316) 873 – 8686
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Entschlüsselung der Aphasie: Globale Studie analysiert den Kampf der Patienten mit Verbzeiten
Ein internationales Forscherteam, darunter Wissenschaftler des HSE-Zentrums für Sprache und Gehirn, hat die Ursachen für Beeinträchtigungen beim Ausdruck der grammatischen Zeit bei Menschen mit Aphasie identifiziert. Sie entdeckten, dass Personen…
Dem Sturm entgegentreten: Eine vorbereitete Zukunft angesichts extremer Klima- und Wetterveränderungen
Von den anhaltenden Dürren im südlichen Afrika und in Mittelamerika zu Beginn des Jahres bis hin zu den jüngsten verheerenden extremen Regenfällen in Spanien und dem tödlichen Hurrikan Helene an…
Magnetischer Effekt: Bahnbrechende Entdeckung für die thermoelektrische Kühlung bei niedrigen Temperaturen
Forschende am Max-Planck-Institut für Chemische Physik fester Stoffe haben in Zusammenarbeit mit der Chongqing University und dem Max-Planck-Institut für Mikrostrukturphysik einen Durchbruch im Bereich topologischer Thermoelektrika erzielt. In ihrer in…