Technologieangebote

SiC Elektroden – Höchstleistungs-Anoden aus Siliziumkarbid für lithiumbasierte Energiespeicher

Wissenschaftler der Universität Paderborn haben ein Verfahren zur Herstellung eines Elektrodenmaterials für eine Batterieelektrode, insbesondere für eine Lithium-Ionen-Batterie entwickelt.
Das Elektrodenmaterial umfasst nano-strukturiertes Siliziumkarbid welches sich durch die Verdampfung von silizium- und kohlenstoffhaltigen Prekursor Material zusammen mit einen Dotierstoff in einem Ofen bei über 1400°C aus der Gasphase als nanokristallines Siliziumcarbid abscheidet.
Das Verfahren ermöglicht eine einfache und kostengünstige Herstellung der Elektro-denoberfläche, die eine hohe Zyklenbeständigkeit und eine hohe Energiedichte in der fertigen Batterie versprechen.

MOSi Anti-Fading Electrolyte Additives – For high voltage application in lithium ion batteries

Scientists of the MEET at Wilhelms University of Muenster developed a set of alkylsilyl complexes (MOSi) as elecrolyte additive, which enhance the performance of lithium ion batteries. Previous studies have shown that electrolyte additives based on metals and semimetals (LiBOB, Mg(TFSI)2, Al(TFSI)3) as well as additives containing trimethylsiloxyl (TMS) groups as ligands can have positive impact on the cycling performance of lithium ion battery cells due to solid electrolyte interphase (SEI) and/or cathode electrolyte interphase (CEI) film forming properties and/or scavenging properties towards acidic impurities. The results of LIB full-cells show a twofold cycle life compared to the standard electrolyte. The addition of the M(TMS)x based additives lowers the charge transfer impedance during prolonged cycling. MOSi leads to lithium ion batteries with enhanced anti fading performance.
A German patent application is pending. International applications are possible.
On behalf of the University Muenster, PROvendis offers access to rights for commercial use as well as the opportunity for further co-development.

SkyrMem Skyrmion memoryr – A technical basis for future storage media

Skyrmions are stable topological vortices in the magnetization. They can be created on surfaces of magnetic materials where they move through the materiallike a kind of hose. Their motion can be controlled with magnetic and/or electric fields or currents. Skyrmions have a diameter in the nm range and can be easily generated and also detected. SkyrMem is a novel storage arrangement that uses these properties of the skyrmions. It consists of a strip of magnetic material, about twice as wide as the diameter of a skyrmion. A potential barrier is applied in the center of the strip so that the skyrmions can only be placed above or below the line. This can be used to represent logical “1” and “0”. By applying a voltage, the scyrmions can be moved along the strip, permitting serial reading of the information.

With SkyrMem, a completely new type of digital memory can be realized. Since scyrmions are very small and nevertheless stable, storage densities above the values customary today for hard disks are possible. High readout rates can also be achieved. SkyrMem provides a technical basis for the storage media of the future.

A German patent application was filed, international applications are still possible.
In the name of the University of Cologne, we offer interested companies the opportunity to license and further develop the technology.

Multifunktionskontrolle-von-Prothesen

Innovative multifunktionelle Protheseskontrollfunktion, welches mehrere DOF gleichzeitig bearbeitet, um eine “natürliche” Bewegung zu ermöglichen.

Schnelle Optimierung der Netzwerkauslastung

Verfahren für die schnelle Optimierung.

Halbleitende Nano-Drähte aus Zinnphosphidiodid (SnIP)

Die erste anorganische Verbindung mit Doppelhelixstruktur ist ein Halbleitermaterial mit interessanten mechanischen Eigenschaften.

Seite
1 7 8 9 10 11 692