Ackerbohne gedeiht trotz eines hyperaktiven Ionenkanals
Pflanzen, bei denen ein Ionenkanal der Vakuole hyperaktiv ist, sind extrem gestresst und wachsen schlecht. Doch die Ackerbohne macht da eine Ausnahme, wie Würzburger Forschende entdeckt haben.
Wie der menschliche Körper nutzen auch Pflanzen elektrische Signale zur Verarbeitung und Weitergabe von Informationen. Neben der Zellmembran spielt dabei die Membran der Zentralvakuole eine bedeutende Rolle. Vakuolen sind typisch für Pflanzenzellen. Sie sind mit Flüssigkeit gefüllte Blasen, fungieren als Speicher für Mineral- und Abfallstoffe und können bis zu 90 Prozent des Zellvolumens einnehmen.
In diesem Speicher lagern Pflanzen auch Kalzium-Ionen. Diese wiederum halten die elektrische Schaltstelle der Vakuole in Schach, den spannungsabhängigen Ionenkanal TPC1. Professor Rainer Hedrich, Leiter des Lehrstuhls für Molekulare Pflanzenphysiologie und Biophysik an der Julius-Maximilians-Universität (JMU) Würzburg, hat diesen Ionenkanal 1987 mit Hilfe der Patch-Clamp-Technik in seiner Postdoc-Zeit beim Nobelpreisträger Erwin Neher entdeckt.
Blockade des Kanals durch Bindung von Kalzium
Jahre intensiver Forschung haben gezeigt, dass Pflanzen, die eine hyperaktive Mutante des Ionenkanals tragen, hochgradig gestresst sind und dadurch schlechter wachsen. Darum ist es für Pflanzen lebenswichtig, die Aktivität des Kanals gut zu regulieren. Die Ackerschmalwand (Arabidopsis thaliana), die Modellpflanze der Genetik, deckelt die Kanalaktivität durch vakuoläre Kalzium-Ionen: Diese binden an den Kanal und erschweren damit dessen Öffnung.
Zur molekularen Entschlüsselung der Kalzium-Bindungsstellen des Arabidopsis-TPC1-Kanals haben die JMU-Pflanzenforscherinnen und Pflanzenforscher im vergangenen Jahrzehnt maßgeblich beigetragen. In ihrer neusten Publikation im Journal eLife gehen sie nun der Frage nach, ob es pflanzenartspezifische Variationen im TPC1-Gen gibt und wie sich diese Änderungen auf die Arbeitsweise des Kanals und damit auf die elektrische Erregbarkeit der Vakuole auswirken.
Ackerbohne besitzt eine hyperaktive Kanalvariante
„Durch weltweite Sequenzierungsprogramme haben wir Einblick in die Genome einer steigenden Zahl von Wild- und Kulturpflanzen“, sagt JMU-Professorin Irene Marten. „So kamen wir erstmals artspezifischen Abweichungen in der Kalzium-Bindestelle des TPC1-Kanals auf die Spur.“
Bei der Suche nach Varianten erregten Vertreter der Hülsenfrüchtler, zum Beispiel die landwirtschaftlich genutzte Ackerbohne (Vicia faba), das größte Interesse. In Patch-Clamp-Untersuchungen belegte Dr. Jinping Lu, die Erstautorin der eLife-Studie, dass bei der Ackerbohne der TPC1-Kanal sehr viel aktiver und damit stärker geöffnet ist als bei der Ackerschmalwand. Die Hyperaktivität des Ackerbohnen-Kanals löst bei den Vakuolen wiederum eine elektrische Hypererregbarkeit aus.
„Um der molekularen Ursache für das Hyperaktivitätssyndrom auf die Spur zu kommen, haben wir Bereiche aus der Pore des Ackerbohnen-Kanals in den Arabidopsis-Kanal verpflanzt“, erklärt Irene Marten den Versuchsansatz. Diese Idee war erfolgreich; die Arabidopsis/Ackerbohnen-Kanalchimäre war ähnlich hyperaktiv wie der Spenderkanal aus der Ackerbohne. „Damit konnten wir die Hyperaktivität des Ackerbohnen-Kanals der Unempfindlichkeit der Pore gegenüber hemmenden Kalzium-Ionen zuschreiben“, so Rainer Hedrich.
Strukturbiologen fanden Grund für Hyperaktivität
Um den genauen Mechanismus zu verstehen, suchte das Würzburger Team erneut die bewährte Zusammenarbeit mit den Strukturbiologen Professor Robert M. Stroud und Dr. Sasha Dickinson von der University of California San Francisco (UCSF). Das Expertenduo erstellte umgehend ein 3D-Modell des Ackerbohnen-Kanals und verglich diesen mit der zuvor bestimmten Struktur des Arabidopsis-Kanals.
Es zeigte sich, dass bei der Ackerbohne Aminosäurereste im vakuolären Eingangsbereich der Kanalpore aus dem Ionentransportweg weggeklappt sind. Dadurch können die Kalzium-Ionen nicht mehr binden und die Kanalöffnung unterdrücken. Das hat aber keinen Einfluss darauf, welche Kationen der TPC1-Kanal durchlässt, wie JMU-Privatdozent Ulrich Terpitz und seine Mitarbeiterin Dr. Sabine Panzer vom Lehrstuhl für Biotechnologie und Biophysik zeigten.
Ackerbohnenkanal: hyperaktiv, aber stressfrei
Obwohl der Ackerbohnen-TPC1-Kanal länger geöffnet ist, sind die Ackerbohnen nicht gestresst und wachsen normal. „Welche Mechanismen nutzt die Ackerbohne, um die TPC1-Kanalaktivität auf ein erträgliches Maß zu dimmen und somit keinen Schaden zu erleiden? Oder zieht die Ackerbohne gar einen Vorteil aus dem leichter aktivierbaren, gegen Kalzium unempfindlichen TPC1-Kanal und kann sich damit besser an bestimmte Umweltbedingungen anpassen?“ Mit diesen Fragen umreißt Irene Marten, wie die nächsten Forschungsschritte des Teams aussehen.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Irene Marten, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, irene.marten@uni-wuerzburg.de
Originalpublikation:
Jinping Lu Ingo Dreyer Miles Sasha Dickinson Sabine Panzer Dawid Jaślan Carlos Navarro-Retamal Dietmar Geiger Ulrich Terpitz Dirk Becker Robert M Stroud Irene Marten Rainer Hedrich (2023) Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole Two Pore Channels, eLife 12:e86384
Media Contact
Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften
Weltweite, wissenschaftliche Einrichtungen forschen intensiv für eine zukunftsfähige Land- und Forstwirtschaft.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Themen: Bioenergie, Treibhausgasreduktion, Renaturierung und Landnutzungswandel, Tropenwälder, Klimaschäden, Waldsterben, Ernährungssicherung, neue Züchtungstechnologien und Anbausysteme, Bioökonomie, Wasserressourcen und Wasserwiederverwendung, Artenvielfalt, Pflanzenschutz, Herbizide und Pflanzenschädlinge, digitale Land- und Forstwirtschaft, Gentechnik, tiergerechte Haltungssysteme und ressourcenschonende Landwirtschaft.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…