50-Tonnen-Prüfstand für Brückenbauteile aus Stahl

Mit dem neuen Prüfstand lassen sich verstärkte Brückenbauteile in zwei Richtungen gleichzeitig belasten. Bild und Video: Lehrstuhl für Metallbau https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34802/

Mehr als 2000 Brücken in Deutschland müssen in den nächsten Jahren saniert oder durch Neubauten ersetzt werden. Die Kosten dafür gehen in die Milliarden.

Viele der Neubauten werden Stahlbrücken sein, die oft langlebiger, leichter zu inspizieren und in Stand zu setzen sind als Bauten aus Stahlbeton. „Bei den enormen Baukosten der Stahlbrücken lohnt es sich, Einsparpotenziale auszuschöpfen, beispielsweise indem man den Materialeinsatz optimiert“, sagt Prof. Martin Mensinger, Inhaber des Lehrstuhls für Metallbau an der TUM.

Um die Brücken so leicht wie möglich und so stabil wie nötig so zu gestalten, muss man allerdings sehr genau wissen, welchen Kräften die Bauteile standhalten. „Die Belastungsgrenzen im Labor zu ermitteln, ist jedoch ziemlich schwierig: Die Bauteile einer Stahlbrücke sind mehrere Meter lang und tonnenschwer, da stößt man schnell an technische Grenzen“, erklärt Mensinger.

Stahl unter Druck

Im Auftrag der Autobahndirektion Nordbayern hat er mit seinem Team den ersten Prüfstand entwickelt, mit dem sich verstärkte Brückenbauteile mit realen Dimensionen in zwei Richtungen gleichzeitig belasten lassen. Dabei wirken dieselben Kräfte, die während des Baus einer Stahlbrücke auftreten.

Auf der Baustelle werden die Brückenbauteile, jedes Segment ist mehrere Meter lang, verschweißt und kontinuierlich nach vorn geschoben – in den freien Raum hinaus. Bis das Konstrukt den nächsten Brückenpfeiler erreicht, liegt die gesamte Last auf dem Segment, das sich über dem letzten Pfeiler befindet. Die Belastung ist in diesem Moment maximal. Nach Fertigstellung der Brücke, wirken nur noch sehr viel geringere Kräfte auf die Bauteile ein.

Die Belastungsgrenze überschreiten

Mit dem neuen Prüfstand, einem Koloss, der 50 Tonnen wiegt und einen ganzen Laborraum füllt, lassen sich diese maximalen Kräfte, die während des Baus auftreten, simulieren. Physikalisch betrachtet wirken hier zwei Kräfte gleichzeitig: Die Bauteile werden in Längsrichtung gestaucht und senkrecht dazu zusammengedrückt. Die Ingenieure sprechen von bi-axialer Druckbelastung. Die zu prüfenden 12 Quadratmeter großen Brückenteile werden mit Hilfe von Hydraulikpressen so lange gedrückt, bis der Stahl nachgibt und – begleitet von einem deutlich hörbaren Knacken – Beulen bekommt.

Beulen im Dienst der Wissenschaft

Sechs verschieden dimensionierte Seitenbauteile für die geplante Brücke bei Oberthulba hat Mensingers Team im Dienst der Wissenschaft verbeult. „Mit Hilfe der Ergebnisse können die Statiker jetzt genauer planen und die Bauteile so dimensionieren, dass sie den extremen Bedingungen während der Bauphase standhalten“, erklärt Nadine Maier. Die Bauingenieurin ist verantwortlich für die Planung und Durchführung der Versuche.

Bisher ist die Grundlage der statischen Berechnung die Norm Eurocode 3 (DIN EN 1993-1-5). Die dort enthaltenen Regelungen für die komplexen Belastungen werden seit Jahren kontrovers diskutiert. Um die Norm weiterzuentwickeln, ist eine wissenschaftliche Absicherung notwendig „Man ist aktuell gezwungen, mit einem Verfahren zu rechnen, welches nur für nichtverstärkte Bauteile entwickelt wurde“, sagt Maier: „Diese Ungenauigkeiten führen in der Praxis dazu, dass Brückenbauteile häufig überdimensioniert werden. Dank der Untersuchungen auf dem Prüfstand lässt sich bei der Planung der Talbrücke Thulba jetzt erstmals der Materialeinsatz optimieren.“

Kontakt:

M. Sc. Nadine Maier
Technische Universität München
Nadine Maier
Tel: + 49.89.289.23055
nadine.maier@tum.de

www.metallbau.bgu.tum.de 

Media Contact

Dr. Ulrich Marsch Technische Universität München

Weitere Informationen:

http://www.tum.de

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…