Alternativer Zement – Rezeptur für Öko-Beton

Im Beton-Labor werden die Zutaten für den Öko-Beton gemischt. Bild: Empa

Es ist das am meisten genutzte Produkt der Welt. Unverzichtbar und doch gleichzeitig im Zuge der Klimadebatte verunglimpft: Zement. Vermischt mit Wasser, Sand und Kies gibt das Beton, dessen Schultern unsere moderne Welt tragen.

Aufmerksamkeit erregt das genügsame Material jedoch vor allem mit einer anderen Eigenschaft: Wird eine Tonne Zement hergestellt, steigen rund 700 Kilogramm Kohlendioxid in die Atmosphäre. Das ist zwar weniger als etwa bei der Stahl- oder Aluminiumgewinnung.

Aber die schiere Menge macht es aus. Jährlich produzieren wir weltweit rund zwölf Kubikkilometer Beton, eine Menge, mit der sich der Vierwaldstättersee komplett auffüllen liesse – jedes Jahr aufs Neue. Tendenz steigend.

Der Anteil des weltweiten Kohlendioxidausstosses, den die Zementindustrie verursacht, macht derzeit rund sieben Prozent aus. Dieser dürfte künftig allerdings ansteigen, da der Bedarf in Asien und zunehmend auch in Afrika wächst, während die Produktion in Europa stabil ist.

Höchste Zeit also, sich nach Zement umzusehen, der den Menschen zwar Wohnung und Infrastruktur bietet, aber dennoch den Umweltaspekten Rechnung trägt und sich den Klimazielen entsprechend produzieren lässt. Das Umweltprogramm der Vereinten Nationen (UNEP) fordert denn auch, umgehend neue zementbasierte Materialien, die klimafreundlicher und kostengünstig sind, zu entwickeln und einzusetzen.

Empa-Forscher arbeiten darum an alternativen Zement- und Betonarten, bei deren Herstellung weniger schädliches Klimagas entsteht oder sogar Kohlendioxid gebunden wird.

«Traditionell wird Zement im Drehrohr-Ofen bei rund 1450 Grad Celsius gebrannt», sagt Empa-Forscher Frank Winnefeld von der Abteilung «Concrete & Asphalt». Fossile Brennstoffe können hierbei zwar durch alternative Energien ersetzt werden. «Allerdings ist das Sparpotenzial bei einem Substitutionsgrad von derzeit durchschnittlich 50 Prozent mit den heutigen Technologien bereits ziemlich ausgereizt, zumindest in Europa», so Winnefeld.

Mehr Energie sparen lässt sich jedoch, wenn man Rohstoffe einsetzt, die eine geringere Brenntemperatur benötigen. Ein vielversprechender Kandidat ist CSA-Zement aus Calciumsulfoaluminat. Er benötigt eine um 200 Grad niedrigere Brenntemperatur und stösst pro Tonne Zement rund 200 Kilogramm weniger Kohlendioxid aus.

Die Reduktion der Treibhausgasemissionen ist dabei aber nicht nur der geringeren Brenntemperatur geschuldet. Ein grosser Anteil des Klimavorteils von CSA-Zement liegt an der geringeren Menge an Kalkstein in der Rohstoffmischung.

Gigantischer Bedarf

Kalkstein verursacht durch eine chemische Reaktion während der Zementherstellung nämlich den Grossteil der CO2-Emissionen. Den Anteil an Kalkstein zu verringern, ist deshalb ein interessanter Aspekt, um Öko-Zement zu entwickeln. Neben CSA-Zement sind dies beispielsweise Inhaltsstoffe, die als Abfälle anderer Industriezweige anfallen.

Etwa Schlacke aus Hochöfen bei der Roheisengewinnung sowie Flugasche, die bei der Kohleverbrennung übrigbleibt. Beide Produkte können mit Zement vermischt werden und helfen so, die CO2-Emissionen zu senken.

Doch diese Sekundärrohstoffe können den gigantischen Bedarf der Branche nicht decken. Empa-Forscher gehen daher neue Wege und identifizieren Industriezweige, deren Sekundärrohstoffe noch wenig genutzt sind. «Bei der metallurgischen Rückgewinnung von Edelmetallen aus Elektronikschrott bleibt eine hochwertige Schlacke übrig, die in Pulverform ebenfalls mit Zement vermischt werden kann», erklärt Winnefeld.

Entspricht der Gehalt an Schwermetallen den gesetzlichen Normen, könne dieser Zement durchaus auch in der Schweiz zum Einsatz kommen. Die gute Nachricht: Der Bodensatz der «urbanen Mine» aus den Überresten unserer ausgedienten Handys und Computer wird künftig noch weiter anwachsen. Möglich sei es darüber hinaus, so der Forscher, mineralische Bauabfälle für Mischzement zu verwenden.

Die Art der Zusatzstoffe im Zement liesse sich sogar derart verändern, dass der Vorgang des Brennens komplett entfiele. Im sogenannten alkali-aktivierten Zement werden die Bestandteile wie Schlacke, Asche oder calcinierter Ton durch starke alkalische Lösungen wie etwa Natriumsilikate zur erwünschten chemischen Reaktion animiert.

Die Produkte dieser Reaktion verbinden sich daraufhin zu einem Material, dessen Druckfestigkeit jener von gebranntem, herkömmlichen Zement entspricht.

Klimagas in Beton gebannt

Geradezu genial wirkt zudem die Möglichkeit, Kohlendioxid im Beton zu binden, statt es frei werden zu lassen. Ein CO2-negativer Beton wäre ein wahrer Klimafreund. Empa-Forscher arbeiten beispielsweise an einem Magnesium-basierten Zement, der die Grundlage für diesen Öko-Beton liefern soll. Ressourcen für den Rohstoff bieten sich in Regionen, in denen magnesiumhaltiges Olivin im Boden vorkommt.

Das Mineral findet sich vor allem tief im Erdmantel. Wird es aber durch vulkanische Aktivität an die Erdoberfläche transportiert, etwa in Skandinavien, lässt es sich abbauen. Bei der Zementherstellung aus Olivin wird dem rohen Magnesiumsilikat dann Kohlendioxid zugeführt.

Und da in einem weiteren Verarbeitungsschritt nur ein Teil des Materials gebrannt wird, entsteht beim Brennen des Zements weniger CO2 als vorher verbraucht wurde. Das Ergebnis trägt zwar bereits einen eingängigen Namen («MOMS», Magnesium Oxide derived from Silicates), seine Eigenschaften sind jedoch noch weitgehend unerforscht.

Wachsende Vielfalt

Damit aber solche Ansätze nicht als Nischenprodukte enden, sondern industriell und kosteneffizient produzierbar sind, müssen Analysen zeigen, dass Öko-Zement die gleichen Anforderungen erfüllt wie herkömmliche Produkte. Bei vielen alternativen Zementarten fehlen derzeit noch die Rezepte, in welchen Mengen neue Bestandteile zugemischt oder Herstellungsverfahren abgewandelt werden können, ohne die begehrten Eigenschaften des traditionellen Zements aufs Spiel zu setzen.

Denn solange sich die mindestens gleichwertige Leistungsfähigkeit von Öko-Zement nicht zweifelsfrei aufzeigen lässt, bleibt der klassische Portland-Zement, der günstige und bestens charakterisierte Baustoff, weiterhin das für die Bauingenieure massgebliche Material.

Und so analysieren die Zementforscher an der Empa derzeit chemische Mischungsverhältnisse und Konformitätskriterien wie Festigkeit und Dauerhaftigkeit neuer Zementarten und bereiten damit den Weg zu normgerechten Zulassungen. Dazu gehören Untersuchungen im Kleinen wie im Gigantischen.

Neben chemischen Untersuchungen, mikroskopischen Analysen und thermodynamischen Modellierungen, mit denen die Reaktionen im Inneren des Zements erforscht werden, wird auch die Belastbarkeit grosser Bauteile aus verschiedenen Zementarten verglichen.

«Industrielle Prozesse müssen noch optimiert werden, da sie in vielen Fällen noch zu teuer sind», so Winnefeld. Klar sei aber bereits, dass sich mit alternativen Zementarten Beton mit einer vergleichbaren oder sogar besseren Dauerhaftigkeit herstellen lasse.

Eine Entwicklung zeichnet sich jedenfalls schon jetzt ab: Die Vielfalt der Zement- und Betonprodukte wird künftig zunehmen. Für die Baustoffproduzenten bringt diese Vielfalt erhöhte Anforderungen mit sich.

Zudem, so ist sich Winnefeld sicher, würden bei der Nutzung von Sekundärrohstoffen lokale Lösungen attraktiver, wenn Transportwege entfallen, weil beispielsweise passende Industrierückstände in der Nähe eines Zementwerks anfallen.

((BOXE))

Zement und Beton

Die Betonproduktion ist global für etwa 6 Prozent, in der Schweiz sogar für 9 Prozent der menschgemachten CO2-Emissionen verantwortlich. Im Heimwerkerbereich wird Beton anhand einfacher Faustformeln gemischt. So ergeben 300 Kilogramm Zement, 180 Liter Wasser sowie 1890 Kilogramm Gesteinskörnung einen Kubikmeter Beton. Der CO2-Ausstoss des Betons stammt grösstenteils vom Zementanteil: Zement muss bei 1450 Grad gebrannt werden, dabei löst sich mineralisch gebundenes CO2aus dem Kalkstein. Weltweit werden jährlich 2,8 Milliarden Tonnen Zement hergestellt.

Dr. Frank Winnefeld
Concrete & Asphalt
Tel. +41 58 765 4535
Frank.Winnefeld@empa.ch

Alexander German
Concrete & Asphalt
Tel. +41 58 765 61 69
alexander.german@empa.ch

https://www.empa.ch/web/s604/a-recipe-for-eco-concrete

Media Contact

Dr. Andrea Six Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…