Ein speziell «ertüchtigtes» Laborgebäude

Baudynamisches Berechnungsmodell: Um Folgen von Erschütterungen auf das gesamte Gebäude berechnen zu können, wurde es in kleine Einzelteile unterteilt, die miteinander verbunden sind (Finite-Elemente-Methode).
Bild: WaltGalmarini AG

Campus «co-operate»: Richtfest für das neue Empa-Laborgebäude.

Das künftige Laborgebäude der Empa, das zurzeit in Dübendorf auf dem neuen Forschungscampus «co-operate» entsteht, feierte am 14. Juli Richtfest. Es wird dereinst hoch empfindliche Forschungsinstrumente beherbergen. Um diese vor Erschütterungen zu schützen, haben Fachleute das Bauwerk entsprechend ausgelegt und geplant – bis zu kleinsten Details.

Die Erweiterung des gemeinsamen Campus der Empa und der Eawag in Dübendorf schreitet zügig voran: Am 5. Mai 2021 begannen die Bauarbeiten mit dem «ersten Spatenstich», ausgeführt von Vertretern der Bauherrinnen Empa und Eawag, des ausführenden Totalunternehmers Implenia Schweiz AG, des Architekturbüros SAM Architekten und der Stadt Dübendorf. Tags darauf fuhren dann die Bagger auf und begannen mit den Aushubarbeiten.

Knapp vier Monate später fand am 3. September die Grundsteinlegung statt, wiederum durch die Vertreterinnen und Vertreter der am Projekt «co-operate» beteiligten Partnern sowie rund 50 Gästen. Dabei wurde ins Fundament des neuen Laborgebäudes eine Zeitkapsel mit einigen zeittypischen Dingen als Inhalt eingelassen.

Am 14. Juli stand der nächste Meilenstein an: Das Laborgebäude ist im Rohbau fertiggestellt und hat seine volle Höhe erreicht. Traditionell findet dann das Richtfest statt, auch «Aufrichte» genannt, bei dem als deutlich sichtbares Zeichen der Vollendung des Rohbaus ein Bäumchen aufs Dach gestellt wird. Im Mittelpunkt der Feierlichkeit stehen für einmal aber nicht die Chefs aller am Projekt beteiligten Firmen, sondern die Ausführenden, die Bauleute. Ihnen wird von der Bauherrschaft mit der Feier für ihre wertvolle Arbeit gedankt. Eine Arbeit, die sie schon bei der Vorbereitung des Baugrundes vor einige Herausforderungen gestellt hat.

Ein besonders vibrationsarmes Gebäude

Ob Elektronenmikroskope, mit denen die Forschenden Atome unter die Lupe nehmen, oder Geräte für Thermogravimetrie, mit denen sie Massen von weit unter einem Mikrogramm «wiegen»: Solche Apparaturen müssen selbst vor winzigen Erschütterungen geschützt werden. Schon kräftige Schritte auf einem Flur nebenan oder das Rattern eines Trams auf einer entfernten Strasse können Messresultate verfälschen.

Ein Risiko, dem die Empa bei ihrem künftigen Laborgebäude aufwendig Rechnung trägt – von der Vorplanung bis zum Abschluss des Bauwerks, das ab Frühjahr 2024 Platz für etwa 30 Labore und 30 Büros bieten wird. Die Anforderungen an vibrationsarme Bauwerke sind hoch; sie sind mit Hilfe von VC-Kategorien («Vibration Criteria»), die auch in der Mikro- und Nanotechnologie verwendet werden, mitsamt zulässigen Schwingungspegeln in technischen Vorschriften genormt und beschrieben.

«VC-C» zum Beispiel ist «ein geeigneter Standard für Lichtmikroskope mit bis zu 1000-facher Vergrösserung», so heisst es da: Er gilt im Empa-Gebäude in allen Laborräumen oberhalb der Erde. Strengere VC-E-Anforderungen gelten dagegen für die Fläche im Untergeschoss, auf der die empfindlichsten Apparaturen installiert werden. «Erforderlich für Geräte höchster Präzision», heisst es in der technischen Richtlinie, «kann nur in wenigen Fällen eingehalten werden, vorzugsweise auf nicht unterkellerten Bodenplatten».

Zwischen zwei Erschütterungsquellen

Ob solche Vorgaben auf dem Baugrund des Empa-Campus überhaupt einzuhalten sind, musste deshalb vorab geprüft werden. Die Lage erschien schliesslich ungünstig: an der nördlichen Grenze eine Eisenbahnlinie mit schwergewichtigen Zügen und die viel befahrene Überlandstrasse, die das Gelände nach Süden begrenzt – in Zukunft zusätzlich mit einer geplanten Tramlinie, die Erschütterungen des Bodens noch verstärken wird.

Wie stark der Boden wo vibriert, erkundeten Spezialisten des Bochumer Ingenieurbüros für Baudynamik Heiland und Mistler im Sommer 2018 auf dem Empa-Campus – mit stundenlangen Schwingungsmessungen an der Geländeoberfläche und in vier Metern Tiefe. Zudem erfassten sie an einem nahe gelegenen Tramgleis in Dübendorf die Schwingungen im Boden, um auch diese künftige Belastung zu berücksichtigen. Und registrierten auch die Magnetfelder an beiden Standorten (siehe Infobox.)

Die Resultate zeigten, dass die Schwingungen am gewählten Bauort grundsätzlich gering genug sind, um die strengen Vorgaben zu erfüllen. «Das leuchtet letztlich auch ein», sagt Kevin Olas, der das Projekt für die Empa leitet, «dort in der Mitte des Geländes sind wir von beiden Quellen weit genug entfernt».

Nun stellte sich die Frage: Wie bauen? Damit das Bauwerk die vorhandenen Schwingungen zuverlässig «schluckt», wurden zwei Strategien diskutiert: Von einer «federnden» Lagerung, zum Beispiel durch eine Gründung auf Elastomeren, rieten die Fachleute ab – wegen der komplexen Bauweise und womöglich kürzerer Lebensdauer. Stattdessen wurde die Variante «Masse und Steifigkeit» beschlossen: so schwer und starr bauen, so Kevin Olas, dass Schwingungen das Gebäude erst gar nicht erst «anregen» können. «Das ist letztlich effizienter», sagt Olas – quasi wie ein Öltanker, der so massiv ist, dass ihn selbst Sturmwellen nicht ins Wanken bringen, wie es Baudynamiker Dieter Heiland erklärt.

Grosse Massen und kleine Details

In die Tiefe bohren: Das Gebäude lagert mit seiner Betonplatte auf 48 Pfählen, die die Lasten in tiefere Schichten tragen. Bild: Empa

Das Resultat ist «eine supersteife Betonkonstruktion, die fast nicht in Schwingung zu versetzen ist», so der gelernte Architekt Olas – ein extrem schweres Bauwerk also. Auch deshalb tragen 48 Pfähle einer «kombinierten Pfahl-Plattengründung» die Lasten über Mantelreibung in eine tragfähigere Bodenschicht in bis zu 18 Metern Tiefe ab. Beispiel Betondecken: Sie sind 53 Zentimeter stark, versehen mit sieben Zentimetern Verbundestrich obenauf. «So dicke Decken wären statisch gesehen gar nicht nötig gewesen», erklärt Olas.

Auf der Fläche, die für höchstempfindliche Messgeräte vorgesehen ist, ist die Bodenplatte sogar 80 Zentimeter stark. «Das ist sozusagen der Supertanker in unserem Supertanker», sagt Olas, «statisch fast absurd, aber für den Schutz vor Erschütterungen geht es eben nicht anders». Und unter dem Fundament lagert diese Zone statt auf nachgiebigen Polystyrol-Dämmplatten auf härteren Platten aus Schaumglas – ein Detail, um ein noch steiferes Durchbiegungsverhalten zu gewährleisten.

Neben Zügen und Automobilen können freilich auch andere Einflüsse unerwünschte Schwingungen auslösen. Menschen zum Beispiel: Im ungünstigsten Fall können ihre Schritte Probleme machen – doch die baudynamischen Berechnungen des beauftragten Zürcher Ingenieurbüros WaltGalmarini zeigen, dass die Decken massiv und steif genug sind, um dadurch nicht zu stark angeregt zu werden. Oder auch die Lüftungszentrale: Weil solche Anlagen auf dem Dach Schwingungen auf die Decken übertragen können, müssen sie mit einer eigens eingestellten Federlagerung «entkoppelt» werden.

Diese und viele weitere Massnahmen werden dem Auge verborgen sein, wenn das Empa-Laborgebäude im Frühjahr 2024 fertiggestellt und im Sommer 2024 bezogen wird. Besucher mit einem Blick für Details werden dennoch erkennen, dass das Bauwerk konsequent auf minimale Schwingungen ausgelegt ist – an den Fahrbahnen der Zufahrten: Ihre Oberfläche wird so glatt und «leise» wie möglich gebaut, zum Beispiel durch einen hohen Anteil an Luftporen, um auch kleinste Erschütterungen durch Fahrzeuge zu vermeiden.

Magnetfeld-Messungen

Neben Schwingungen können auch Änderungen von Magnetfeldern den Betrieb empfindlicher Geräte beinträchtigen. Die Messungen vor Ort ergaben, dass beispielsweise für ein Rasterelektronen-Mikroskop eine aktive Kompensation nötig wäre – etwa durch so genannte Helmholtz-Spulen, die ein homogenes Magnetfeld erzeugen. Die Hauptverursacher von Feldveränderungen sind der Strassenverkehr auf der Südseite und die Bahnlinie auf der Nordseite des Geländes. Bei der zukünftigen Tramlinie rechnen die Fachleute mit so grossen Feldveränderungen, dass weitere Schutzmassnahmen nötig werden, etwa ein Kompensationskabel zwischen den Schienen, das die Magnetfelder durch den Trambetrieb deutlich reduzieren würde.

Wissenschaftliche Ansprechpartner:

Kevin Olas
Real Estate Management
Tel. +41 58 765 41 64
kevin.olas@empa.ch

http://www.empa.ch

Media Contact

Rémy Nideröst Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…