Leben alte Brücken länger als gedacht?
Lange hatten die Forscherinnen und Forscher nach dieser Brücke gesucht. Die Anforderungen waren klar: Vor 1966 erbaut, möglichst viele Brückenfelder zwischen den Pfeilern, gut zugänglich und natürlich bereits stillgelegt. Die 60 Jahre alte Saalebrücke Hammelburg in Unterfranken entspricht diesem Profil perfekt. Sie wies im Laufe der Jahre immer mehr Schäden auf, eine Sanierung wäre unwirtschaftlich gewesen. Seit Dezember 2016 fließt der Verkehr daher über eine neue Brücke.
An der Saalebrücke Hammelburg wollen Ingenieurinnen und Ingenieure der TUM das Tragverhalten von realen Brücken testen und damit einem Widerspruch zwischen Theorie und Praxis auf den Grund gehen. Im Vergleich zu den vor 50 Jahre geltenden Normen schreiben die aktuellen, auf europäischer Ebene erarbeiteten Standards eine stark erhöhte sogenannte Querkrafttragfähigkeit vor. Grund für diese Änderung ist, dass viel mehr Schwerverkehr über die Brücken fließt, denn vor allem die Schwerlastfahrzeuge beanspruchen die Bauwerke.
Rechnerische Defizite, aber keine sichtbaren Schäden
Bei der Querkraft handelt es sich um Beanspruchungen, die senkrecht zur Längsrichtung der Brücke wirken. „Brücken, die vor 1966 gebaut wurden, haben so gut wie keine vertikale Bewehrung, um die Querkräfte aufzunehmen“, erklärt Prof. Oliver Fischer vom Lehrstuhl für Massivbau der TUM. Werden diese Brücken nach den neuen Regeln beurteilt, weisen sie massive Defizite auf. Die Konsequenz daraus ist, dass diese Brücken verstärkt, die Verkehrslasten verringert oder im Extremfall ganze Bauwerke abgerissen und erneuert werden müssen. Allerdings gibt es eine Diskrepanz zwischen der nach aktuellen Normen ermittelten theoretischen und der tatsächlichen Tragfähigkeit. „Es gibt viele Brücken mit einem errechneten Defizit, aber man sieht an den Bauwerken keine Schäden, die dies bestätigen“, sagt Fischer.
Messungen im Bereich der Pfeiler
Das Querkrafttragverhalten ist sehr komplex, weshalb verschiedene theoretische Ansätze existieren, die es beschreiben. „Ein Problem ist, dass die experimentellen Untersuchungen dazu fast ausschließlich im Labor durchgeführt wurden“, erklärt Fischer. „Im kleinen Maßstab verhalten sich viele Tragsysteme anders als im Realzustand.“ Auch der Einfluss, den die natürliche Witterung und die jahrzehntelange Alterung auf die Brücken haben, kann im Labor nicht realitätsgetreu abgebildet werden. Die geplanten Versuche an der Saalebrücke sollen diese Lücke schließen.
Die 163 Meter lange Brücke besteht aus sieben Einzelfeldern. „Die Querkraft ist in der Nähe der Pfeiler beziehungsweise Stützen am größten“, sagt Fischer. Daher sind die Messungen an diesen Stellen besonders interessant. Die Versuche finden an fünf der sieben Felder und jeweils im Bereich der Stützen statt.
Eine Last von 400 Kleinwagen
Die Querkraftbelastung wird bei den einzelnen Versuchen mit einem extra für diese Großversuche gebauten Balken, einem sogenannten Belastungsträger, durchgeführt. Der Belastungsträger ist etwa 32 Meter lang, 1,80 Meter hoch und wiegt ca. 40 Tonnen. Die Gesamtbelastung kann auf bis zu 400 Tonnen gesteigert werden. Das entspricht der Last von zehn 40-Tonnen-Lkw oder 400 Kleinwagen.
Die Messtechnik ist aufwändig: Mithilfe von Glasfasern können die Wissenschaftlerinnen und Wissenschaftler etwa feststellen, wie sich der Beton dehnt und wo Risse entstehen. Der Lehrstuhl für Geodäsie der TUM unterstützt die Versuche durch den Einsatz von hochauflösenden Kameras. Diese dokumentieren die Rissbildung und die Bilder werden anschließend mit spezieller Software ausgewertet.
Ergänzend zu dem Freifeldversuch führen die Forscherinnen und Forscher umfangreiche numerische Simulationen sowie Untersuchungen im Labor durch. Sie haben dafür einen neuartigen Versuchsaufbau entwickelt, in den sie einen Teil einer Brücke einspannen und realitätsnah testen können. Fischer: „Unser klares Ziel ist, neue Ansätze zum Umgang mit älteren Brücken zu formulieren und die Tragreserven noch besser aber dennoch sicher auszunutzen. Hierdurch können im Einzelfall Ressourcen und Geld gespart werden.“
Die Untersuchungen, die vom Bund finanziert werden, werden in enger Zusammenarbeit mit dem Bayerischen des Inneren, für Bau und Verkehr und dem Staatlichen Bauamt Schweinfurt durchgeführt. Die Arbeiten werden unterstützt von der Firma Arlt.
Bilder zur redaktionellen Verwendung:
https://mediatum.ub.tum.de/1362678
Kontakt:
Prof. Dr.-Ing. Oliver Fischer
Technische Universität München
Lehrstuhl für Massivbau
oliver.fischer@tum.de
+49 (89) 289 – 23038
Media Contact
Weitere Informationen:
http://www.tum.deAlle Nachrichten aus der Kategorie: Architektur Bauwesen
Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…