Neuartige Materialkultur in der Architektur
Maison Fibre der Universität Stuttgart auf der Biennale Architettura 2021.
Als Antwort auf die zentrale Frage der Ausstellung „How will we live together?“ präsentieren das Institut für Computerbasiertes Entwerfen und Baufertigung (ICD) und das Institut für Tragkonstruktionen und Konstruktives Entwerfen (ITKE) des Exzellenzclusters IntCDC an der Universität Stuttgart auf der Architekturbiennale Venedig 2021 mit dem „Maison Fibre“ eine vollmaßstäbliche, begehbare Installation, die ausschließlich aus robotisch gefertigten Bauelementen aus Fasern besteht – die erste mehrgeschossige Struktur dieser Art. Es repräsentiert einen alternativen Ansatz zum Entwerfen und Konstruieren von Gebäuden für das Wohnen und Arbeiten in der Zukunft.
Als zentrales Exponat der dazugehörigen Ausstellung zum Thema „Materialkultur“ bietet Maison Fibre den Besucherinnen und Besuchern die räumliche Erfahrung und den konstruktiven Eindruck einer zukunftsweisenden, entmaterialisierten Architektur, deren Bauelemente vor Ort aus nur wenigen Kilogramm Werkstoff hergestellt werden können. Im Vergleich zu Le Corbusiers Maison Dom-Ino, einem prägenden Vorbild für die Architektur des 20. Jahrhunderts, ist das Gewicht von Maison Fibre um das Fünfzigfache reduziert und verweist somit auf eine neue Materialkultur, sowohl für die Architektur als auch die damit verbundenen ökologischen (Material und Energie), ökonomischen (Wertschöpfungsketten und Wissensproduktion), technischen (digitale Technologien und Robotik) und soziokulturellen Fragen.
Faserarchitektur: Anpassungsfähige Materialisierung und variable Materialität
Maison Fibre ist das Ergebnis eines Jahrzehnts der Forschung an robotisch gefertigten Faserverbundstrukturen und wendet diese erstmalig auf begehbare Decken- und Wandelemente für das mehrgeschossige Bauen in der Architektur an. Die gesamte Struktur besteht aus sogenannten Rovings, Bündeln aus endlosen, unidirektionalen Fasern. Um den Modellcharakter des Projekts zu unterstreichen, wurde ein Bausystem aus Wand- und Deckenelementen mit dem für den Wohnungsbau typischen Rastermaß von 2,5 Metern entwickelt.
Die tragenden Wand- und Deckenelemente wurden durch das von den beiden Instituten entwickelte kernlose, robotische Wickelverfahren gefertigt, welches die lokal lastangepasste Auslegung und Ausrichtung der Carbon- und Glasfasern erlaubt und so eine außergewöhnliche Leichtbauweise ermöglicht. So beträgt das resultierende Flächengewicht der tragenden Faserkonstruktion der Bodenelemente im Obergeschoss gerade einmal 9,9 Kilogramm pro Quadratmeter. Die Wandelemente fallen noch deutlich leichter aus.
Für die Fertigung eines tragenden Bodenelements wurden weniger als zwei Prozent des Bauteilvolumens als Materialvolumen benötigt. Dieser extrem geringe Materialverbrauch in Kombination mit der sehr kompakten, robotischen Produktionseinheit erlaubt es perspektivisch, die gesamte Fertigung vor Ort auszuführen, ohne dass dabei Lärm oder Abfall in nennenswertem Umfang entstehen. Dies trifft nicht nur auf den erstmaligen Erstellungsprozess zu, sondern auch auf Erweiterungs- oder Umbauarbeiten. So bleibt die mit dieser Bauweise errichtete Architektur langfristig anpassungsfähig und flexibel.
Die in diesem Projekt untersuchte Faserverbundbauweise für mehrgeschossiges Bauen ist materialübergreifend einsetzbar. Maison Fibre nutzt noch die derzeit maßgeblich verfügbaren Faser- und Harzsysteme, aber es zeichnet sich bereits jetzt eine erhebliche Erweiterung des Materialspektrums in naher Zukunft ab. Dieses reicht von mineralischen Fasersystemen, die extremen Temperaturbeanspruchungen standhalten können, bis hin zu natürlichen Fasersystemen, die innerhalb eines Jahreszyklus nachwachsen. Diese sich von unserer etablierten Vorstellung des Bauens signifikant unterscheidenden Ansätze zur Materialisierung und Materialität von Architektur wird den Besucherinnen und Besuchern in den Ausstellungsteilen „Materialisation Perspective“ und „Materiality Perspective“ erläutert, die im Obergeschoss der Maison Fibre untergebracht sind.
Ausdrucksstarke Architektur
Maison Fibre stellt zugleich eine ausdrucksstarke und authentische Architektur dar, wie auch eine weitgehend entmaterialisierte Struktur, deren rekonfigurierbaren Bauelemente aus nur wenigen Kilogramm Baumaterial hergestellt sind. Der modellhafte Charakter des Projekts erschließt sich aus dem Bezug zu einem prägenden Vorbild der Architekturgeschichte, der Maison Dom-Ino von Le Corbusier.
Die Geschossfläche der Installation entspricht der historischen Referenz, ebenso wie die Gliederung über drei Geschossplatten und das vielseitig erweiterbar gedachte System. Die im Vergleich zu einer Tektonik des Massiven radikale Andersartigkeit des Faserhaften, des Ausdifferenzierten und des Entmaterialisierten wird durch die Inszenierung der tragenden Faserstruktur für die Besucherinnen und Besucher räumlich und haptisch erfahrbar. Ein weiterer Unterschied besteht in der möglichen Anpassbarkeit und somit auch der Interaktion mit dem baulichen Bestand, wie es für ein zukünftiges urbanes Bauen maßgeblich sein wird. Durch die Integration der bestehenden Säulen des Ausstellungsgebäudes in die Installation wird dies bewusst betont.
Neues Denken für den Bau von Lebensräumen
87 Prozent ihrer Lebenszeit verbringen Menschen in Gebäuden. Diese bilden den baulichen Rahmen und das materielle Substrat für unser Zusammenleben. Aber genau diese Materialität und Materialisierung von Gebäuden stellt eine der wesentlichen ökologischen und sozialen Herausforderungen an unsere Gesellschaft dar. Die Frage nach unserem zukünftigen Zusammenleben ist somit intrinsisch mit der Frage nach dem zukünftigen Bauen verbunden. Das derzeitige Bauen ist eine der ressourcenintensivsten und emissionsstärksten menschlichen Aktivitäten überhaupt. Der Pro-Kopf-Verbrauch von Baustoffen für die tragende Gebäudestruktur, die mehr als die Hälfte des Materialeinsatzes bei Gebäuden ausmacht, hat sich im Verlauf des letzten Jahrhunderts vervielfacht. Das Bauschaffen in seiner heutigen Ausprägung, das eine einfache Bauausführung mit einem erheblichen Mehrbedarf an Material erkauft, erscheint nicht länger zukunftsfähig. Es bedarf daher dringend neuer Denkansätze.
Die Natur bietet eine solche paradigmatische Alternative: Fast alle tragenden Strukturen in der Biologie sind Faserstrukturen, bei denen die Orientierung, Richtung und Dichte der Fasern genau an die einwirkenden Kräfte angepasst sind. Der daraus resultierende hohe Grad an morphologischer Differenzierung, Funktionalität und die damit verbundene Ressourceneffizienz sind kennzeichnend für Strukturen in der Natur. Dieses biomimetische Prinzip von „weniger Material“ durch „mehr Form“ wird von dem Projektteam der Universität Stuttgart seit vielen Jahren erforscht. Die Bauweise mit Faserverbundwerkstoffen zeigt einen grundlegend alternativen Ansatz von Materialität für den Bau zukünftiger Lebensräume auf.
Zur Idee des Maison Fibre: Materialkultur der Entmaterialisierung
Der Beitrag von ICD und ITKE zur Architekturbiennale Venedig 2021 ist die architektonische Untersuchung einer alternativen „Materialkultur“, eine Begrifflichkeit, die eher in den Sozial-, Geschichts-, Technik- und Kunstwissenschaften verwendet wird. Maison Fibre, das zentrale Exponat der Ausstellung der beiden Institute, ist zugleich eine vollmaßstäbliche architektonische Installation und ein offenes Modell für den propagierten Kulturwandel. Es thematisiert die Abkehr vom prädigitalen, materialintensiven Bauen unter Verwendung zumeist isotroper und schwerer Baustoffe wie Beton, Stein und Stahl – diese werden häufig in großer Entfernung produziert, zu Bauelementen verarbeitet und dann über weite Strecken transportiert –, hin zu originär digitalen Bauweisen mit lokal ausdifferenzierten und vor Ort gefertigten Konstruktionen aus hochgradig anisotropen Werkstoffen: einer Architektur aus Fasern.
Zitate Professor Achim Menges
„Maison Fibre stellt die materielle Auseinandersetzung mit dem zentralen Ausstellungsthema How will we live together? der Biennale dar. Unser Beitrag hinterfragt den vorherrschenden Ansatz materialintensiver Bauweisen, die eine Hauptursache für die vielfältigen ökologischen und sozialen Herausforderungen unserer gebauten Umwelt sind, und ersetzt diese durch eine Architektur aus Fasern, die nur einen Bruchteil an Materialien verbraucht und vollkommen neue Möglichkeiten der Materialisierung bietet.“
„Maison Fibre ist die erste mehrgeschossige Faserstruktur ihrer Art. Sie basiert auf einem extrem leichten, digitalen Bausystem, das nur aus Fasern besteht. Dieses hätte noch vor wenigen Jahren weder geplant noch gefertigt werden können, und verweist auf eine neuartige Materialkultur in der Architektur.“
„Die Erforschung der Natur löst ein Umdenken in der Architektur aus. Die Biologie verfügt über ein nahezu unerschöpfliches Reservoir an Prinzipien von Form, Struktur und Prozess. Diese stellen oft festgefahrene Ansätze in der Architektur in Frage und eröffnen grundlegend andersartige Möglichkeiten der Gestaltung. Maison Fibre verdeutlicht dies auf besonders eindrucksvolle Weise.“
Zitate Professor Jan Knippers
„Der Prozess ermöglicht die Fertigung vor Ort, ohne dass dabei Lärm oder Abfall in nennenswertem Umfang entstehen. Darüber hinaus ist das Gewicht der Faserstruktur um ein Vielfaches geringer als das Gewicht vergleichbarer Betonkonstruktionen. Dies wiederum erleichtert die Montage erheblich, da keine schweren Transportmittel, Gerüste oder Hebevorrichtungen notwendig sind.“
„Diese hochinnovative Bauweise steht weit außerhalb der bestehenden Konventionen und Regeln des Bauens. Dennoch mussten alle typischen Funktionsanforderungen erfüllt werden, was nur durch umfangreiche Analysen und Tests möglich war.“
Das Maison Fibre: Die Daten
Zweigeschossige, robotisch gefertigte, tragende Glas- und Carbonfaserverbundstruktur aus 23 Kilometern Glasfasern und 20 Kilometern Carbonfasern
Maße (L/B/H):
10,00 x 11,78 x 5,76 Meter
Grundfläche:
125 Quadratmeter gesamt, 62,5 Quadratmeter pro Geschoss
Gewicht der tragenden Faserverbundkonstruktion:
9,9 Kilogramm/Quadratmeter für das begehbare erste Geschoss
Gewicht der tragenden Faserverbundkonstruktion einschließlich der 27 Millimeter Bodenplatten aus Holz:
23,7 Kilogramm/Quadratmeter für das begehbare erste Geschoss
Vergleich Gewicht zu einer konventionellen 200 Millimeter starken Betonplatte:
• Tragende Faserverbundkonstruktion: 50 Mal leichter
• Tragende Faserverbundkonstruktion inklusive der Bodenplatten aus Holz: 21 Mal leichter
Material-Volumen-Vergleich:
1,9 Prozent Materialvolumen pro Deckenvolumen
Die Projektpartner*innen
IntCDC/ICD Universität Stuttgart, Institut für Computerbasiertes Entwerfen und Baufertigung
Prof. Achim Menges
Niccolo Dambrosio, Katja Rinderspacher, Christoph Zechmeister
Rebeca Duque Estrada, Fabian Kannenberg, Christoph Schlopschnat
IntCDC/ITKE Universität Stuttgart, Institut für Tragkonstruktionen und Konstruktives Entwerfen
Prof. Jan Knippers
Nikolas Früh, Marta Gil Pérez, Riccardo La Magna
Mit Unterstützung von:
Werkstatt: Aleksa Arsic, Sergej Klassen, Kai Stiefenhofer
Studierende: TzuYing Chen, Vanessa Costalonga Martins, Sacha Cutajar, Christo van der Hoven, Pei-Yi Huang, Madie Rasanani, Parisa Shafiee, Anand Nirbhaybhai Shah, Max Benjamin Zorn
In Zusammenarbeit mit: FibR GmbH, Stuttgart
Moritz Dörstelmann, Ondrej Kyjanek, Philipp Essers, Philipp Gülke
Mit Unterstützung von: Erik Zanetti, Elpiza Kolo, Prateek Bajpai, Jamiel Abubaker, Konstantinos Doumanis, Julian Fial, Sergio Maggiulli
Projektunterstützung
Universität Stuttgart, Exzellenzcluster IntCDC, EXC 2120, Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg, GETTYLAB, Teijin Carbon Europe GmbH, Elisabetta Cane mit Bipaled s.r.l. – Annalisa Pastore, Trimble Solutions Germany GmbH
Wissenschaftliche Ansprechpartner:
IntCDC/ICD Universität Stuttgart, Institut für Computerbasiertes Entwerfen und Baufertigung, Prof. Achim Menges, Tel.: +49 711 685 827 86, mail@icd.uni-stuttgart.de
IntCDC/ITKE Universität Stuttgart, Institut für Tragkonstruktionen und Konstruktives Entwerfen, Prof. Jan Knippers, Tel.: +49 711 685-83280, info@itke.uni-stuttgart.de
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Architektur Bauwesen
Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…