Sonnenstrom für Fassaden
Photovoltaikelemente gehören aufs Dach – schließlich bekommen sie dort am meisten Sonnenlicht ab. Doch dies ist nur die halbe Wahrheit: Sinnvoll ist es darüber hinaus, PV-Elemente an den Fassaden anzubringen.
Zum einen gibt es dort viel ungenutzte Fläche, zum anderen kann der dort gewonnene Strom die Energieversorgung sehr gut ergänzen. Bislang wird diese Möglichkeit jedoch kaum genutzt: Die Sonne strahlt üblicherweise in einem ungünstigen Winkel auf die Fassaden, zudem sind die Elemente meist keine Verschönerung.
Schöne Fassaden mit Pfiff
Dass dies alles andere als ein KO-Kriterium ist, haben Forscherinnen und Forscher des Fraunhofer-Centers für Silizium-Photovoltaik CSP in Halle im Projekt SOLAR.shell gezeigt – gemeinsam mit Architekten der Hochschule für Technik, Wirtschaft und Kultur Leipzig (HTWK Leipzig): mit einer Solarfassade, die diese Probleme behebt.
»Die Photovoltaikelemente, die in diese Fassade integriert sind, liefern bis zu 50 Prozent mehr Sonnenenergie als planar an Gebäudewänden angebrachte Solarmodule«, sagt Sebastian Schindler, Projektleiter am Fraunhofer CSP. »Und: Die Fassade macht auch optisch etwas her.«
Die Idee und Entwürfe entwickelten die Architekten der Hochschule. Wie muss welches Photovoltaik-Element gekippt sein, damit es möglichst viel Sonnenstrahlung abbekommt? Wie groß sollten die Module sein, wie viele Solarzellen sollten sie optimalerweise enthalten? Die Ergebnisse wurden in einem 2×3 Meter großen Demonstrator aus Aluminium-Verbundplatten gezeigt, in den insgesamt neun Solarmodule eingelassen sind.
Die Fraunhofer-Experten standen mit ihrem Know-how, Rat und Tat zur Seite. Die verwendeten Photovoltaikelemente stammen ebenfalls aus dem Fraunhofer CSP.
Solarmodule an Betonfassaden
Auch für Betonfassaden haben die Forscherinnen und Forscher des Fraunhofer CSP gemeinsam mit der HTWK Leipzig und der TU Dresden entsprechende Möglichkeiten entwickelt, Photovoltaikelemente zu integrieren. Genauer gesagt für Fassaden aus Carbonbeton: Dieser wurde von einem mehr als 150 Partner umfassenden Konsortium im Projekt »C³ – Carbon Concrete Composite« entwickelt.
Statt Stahldrähte verleihen dabei Carbonfasern dem Beton die nötige Stabilität. »Am Fraunhofer CSP haben wir untersucht, wie sich Photovoltaikelemente am besten an solchen Carbonbeton-Fassaden anbringen lassen – wie man also den neuartigen Beton optimal mit der Gewinnung von Sonnenstrom kombinieren kann«, erläutert Schindler.
Die Forscher haben dabei drei unterschiedliche Konzepte und Verfahren erarbeitet, um die PV-Elemente in die Fassadenteile zu integrieren: Entweder können die Solarmodule direkt mit in die Betonteile eingegossen oder auf die Betonplatten laminiert oder geklebt werden. Auch ist es möglich, die Module mit Druckknöpfen, Schraubverbindungen oder anderen Methoden an den Betonplatten zu befestigen – auf diese Weise lassen sie sich für Wartungen oder Reparaturen leicht abnehmen. »Wir konnten zeigen, dass alle drei Befestigungsmöglichkeiten technisch machbar sind«, fasst Schindler zusammen.
Eine Herausforderung besteht unter anderem darin, die Maßhaltigkeit der PV-Module mit den Fertigungsverfahren der Betonteile zu gewährleisten. Dies geschieht beispielsweise, indem eine Absenkung im Betonteil eingebracht wird, in die die Module perfekt hineinpassen.
So bleiben die gewünschte Ausrichtung gegenüber der Sonneneinstrahlung und die Gesamtgestaltung erhalten. »Die Maßhaltigkeit sollte direkt mit im Betonteil implementiert sein«, sagt Schindler. Auch muss sichergestellt werden, dass die PV-Module nicht dort verschraubt werden, wo der Beton besonders dünn ist oder aber Carbonfasern liegen, was die Belastbarkeit des Fassadenteils beeinträchtigen würde. Das Projekt ist mittlerweile erfolgreich abgeschlossen.
SOLARcon: Betonfassaden 2.0
Im Nachfolgeprojekt SOLARcon – ebenfalls gemeinsam mit der HTWK Leipzig und der TU Dresden sowie zwei Unternehmenspartnern, gestartet im November 2019 – etablieren die Fraunhofer-Experten nun marktreife Lösungen für die Integration von PV-Modulen in Fertigbetonteile. Hält die Befestigung der Solarzelle dauerhaft? Um diese Frage zu beantworten, unterwerfen die Fraunhofer-Forscherinnen und -Forscher sowohl die PV-Komponente als auch die Schnittstelle zum Beton entsprechenden Langzeittests.
Wie verhält sich die Schnittstelle bei verschiedenen Witterungsbedingungen? Was ergeben beschleunigte Alterungstests? Zusätzlich zu diesem experimentellen Ansatz stehen Simulationen auf der Agenda, genauer gesagt Finite-Elemente-Methoden.
Über diese können die Experten beispielsweise berechnen, wie sich Beton und Verbindungsstelle zum PV-Element bei hohen Temperaturen aufheizen oder welche Wind- und Drucklasten auf das Solarmodul wirken.
https://www.fraunhofer.de/de/presse/presseinformationen/2020/maerz/sonnenstrom-f…
Media Contact
Alle Nachrichten aus der Kategorie: Architektur Bauwesen
Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…