Warum quillt und reisst Beton?

Durch AAR geschädigte Betonbauten zeigen solche typischen Rissbilder. Die Rissflanken werden durch die austretenden AAR-Produkte dunkel verfärbt. Empa

Beton hält leider nicht ewig. Auch an Betonbauten in der Schweiz nagt der Zahn der Zeit. Betroffen sind nicht nur stahlbewehrte Konstruktionen wie Brücken, sondern auch Betonbauten ohne Bewehrung, wie Staumauern. Einer der Gründe dafür ist die sogenannte Alkali-AggregatReaktion (AAR). Sie kann alle Betonbauten unter freiem Himmel betreffen.

Bei der AAR sind die Zutaten des Betons selbst das Problem: Zement – der «Leim» des Betons – enthält Alkalimetalle wie Natrium und Kalium. Die Feuchtigkeit im Beton wird dadurch zu einer Lauge. Die Hauptbestandteile von Beton sind Sand und Kies.

Diese wiederum bestehen unter anderem aus Silikaten, beispielsweise Quarz oder Feldspat. Mit diesen Silikaten reagiert nun das alkalische Wasser und führt zur Bildung von Alkali-Kalzium-Silikat-Hydrat. Dieses Mineral lagert mehr und mehr Wassermoleküle in seiner Struktur ein, dehnt sich dadurch aus und sprengt mit der Zeit den Beton von innen.

Bemerkenswert dabei: In zahlreichen Kieskörnern, die im Beton stecken, läuft die gleiche Reaktion ab; die Steinchen werden einzeln gesprengt. Der Druck, der durch diese Mikroreaktion auf ein ganzes Bauwerk ausgeübt werden kann, ist gewaltig:

Eine Staumauer etwa kann sich um einige Dezimeter ausdehnen. Das kann zu Schäden an den seitlichen Anschlusspunkten zum Fels oder zu Verformungen im Bereich von Schleusen führen. Die Reaktion verläuft langsam, so dass bei betroffenen Bauwerken erst nach 10 bis 15 Jahren erste Schäden bemerkbar werden. Durch das kontinuierliche Quellen des Betons kann allerdings die Lebensdauer von Bauwerken stark verkürzt werden.

2015 gelang es einem Team aus Wissenschaftlern der Empa und des Paul-Scherrer-Instituts (PSI) die Struktur des wasserhaltigen Kristalls, der das Quellen im Beton auslöst, erstmals zu identifizieren. Zuvor war die Struktur Gegenstand vieler Spekulationen gewesen.

Die Entdeckung war der Auslöser für ein interdisziplinäres Forschungsprojekt, das vom Schweizerischen Nationalfonds (SNF) finanziert wird. Beteiligt sind neben der Empa und dem PSI zwei Institute der EPFL; die Forschungsaktivitäten koordiniert der Empa-Forscher Andreas Leemann. «Wir wollen die AAR in allen Dimensionen untersuchen und verstehen, von der Atom-Ebene und der Längenskala im Angström-Bereich bis hin zu den Auswirkungen auf ganze Bauwerke in der Zentimeter- und Meterskala», erläutert Leemann.

Sechs Teilprojekte für alle Dimensionen

Zu diesem Zweck wurden in dem SNF-Synergia-Projekt sechs Teilprojekte definiert: Das PSI untersucht mit Hilfe von Synchro­tron­strah­lung die Struktur der Reaktionsprodukte, um ihr Quellen erklären zu können. An der EPFL werden die massgebenden Rahmenbedingungen für das Auflösen der Silikate und die Zusammensetzung der anfänglich gebildeten Reaktionsprodukte untersucht; zudem werden mit Computersimulationen die Auswirkungen des Quellens auf Bauwerke erforscht. Und an der Empa wird einerseits die Entstehung der Risse im Beton räumlich und zeitaufgelöst mit Computer-Tomografie im Empa-Röntgenzentrum erfasst; andererseits werden die wasserhaltigen Kristalle im Labor synthetisiert.

So können die Forscher grössere Mengen des Stoffs erhalten, der gewöhnlich in nano- bis mikrometerkleinen Rissen der Kieskörner steckt. Nur mit grösseren Mengen der fraglichen Substanz lassen sich jedoch physikalische Eigenschaften genau bestimmen. Die so gewonnenen Erkenntnisse sollen nicht nur dazu dienen, die AAR besser zu verstehen, sondern auch Wege aufzeigen, wie sich Schäden – und dadurch Kosten – vermeiden lassen.

«Wir sind bereits mittendrin, das bislang nur in Teilen bekannte Phänomen zu entschlüsseln», so Leemann. Im Mai 2017 startete das vierjährige Forschungsprojekt. Erste Ergebnisse liegen bereits vor. Im nächsten Schritt geht es nun darum, die einzelnen Arbeitsgruppen stärker zu vernetzen und auf den Ergebnissen der Partnergruppen aufzubauen. So soll am Ende ein vollständiges Bild der AAR entstehen, das es erlaubt, den Zustand und die Gefährdung von Beton-Bauwerken besser abzuschätzen und das Schicksal der angegriffenen Bauten wissenschaftlich fundiert zu begleiten.

Andreas Leemann
Concrete / Construction Chemistry
Phone +41 58 765 44 89
Andreas.Leemann@empa.ch

https://www.empa.ch/web/s604/aar

Media Contact

Rainer Klose Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…