Wenn der Meeresboden zu Teig wird

Im neu ausgebauten Großen Wellenkanal des Forschungszentrums Küste in Hannover ist innerhalb des Projekts NuLIMAS eine groß-skalige Experimentalkampagne geplant.
Connor McBriarty / TU Braunschweig

Rund 1.500 Windräder drehen sich in der deutschen Nord- und Ostsee. Und es sollen noch mehr werden. Bis 2030 soll die Leistung der Offshore-Windenergie-Anlagen von etwa 7,5 Gigawatt auf 20 Gigawatt und 40 Gigawatt in 2040 ansteigen. Dabei könnten auch schwimmende Windkraftwerke eine Rolle spielen. Um die Plattformen optimal an die Gegebenheiten unter Wasser anzupassen, untersuchen Forschende im internationalen Verbundprojekt NuLIMAS das Zusammenspiel von Wellen, Schwimmkörpern und Meeresboden. Mithilfe von Computermodellen wollen sie die sogenannte Bodenverflüssigung um Windkraftwerke simulieren. Koordiniert wird das Projekt vom Leichtweiß-Institut für Wasserbau der TU Braunschweig.

Visualisierung der Schwimmplattform GICON®-SOF3. Das Schwimmende Offshore-Fundament wird mit Seilen verspannt. Die Seile verbinden das schwimmende Fundament mit dem auf dem Meeresboden liegenden Schwergewichtsanker.
GICON®

Schwimmende Windräder könnten der Windenergie noch einmal einen Schub geben: Die Pfähle der fest verankerten Offshore-Windanlagen können bislang nur in einer Wassertiefe bis zu 60 Metern und somit in Küstennähe aufgestellt werden, um noch wirtschaftlich zu sein. Schwimmende Windkraftwerke benötigen dagegen lediglich eine flexible Verankerung am Boden. Damit könnten Windparks auch weit entfernt von der Küste errichtet werden, wo zudem höhere Windgeschwindigkeiten herrschen.

Noch steckt die Forschung zu der neuen Technologie in den Kinderschuhen. Vor der Küste Schottlands ist 2017 mit „Hywind Scotland“ einer der ersten schwimmenden Offshore-Windparks mit fünf Windturbinen ans Netz gegangen. Weitere kleinere Prototypen gibt es auch in Spanien und Italien.

Wenn der Meeresboden zu Teig wird und Ankerkräfte schwinden

Eine der Herausforderungen beim Einsatz schwimmender Windkraftanlagen: Wie können die Unterstrukturen optimal an die Gegebenheiten unter Wasser angepasst werden? Dazu untersuchen Forschende des Leichtweiß-Instituts für Wasserbau (LWI) der TU Braunschweig im Verbundprojekt NuLIMAS gemeinsam mit Partnern aus Deutschland, Polen und der Türkei Prozesse der Bodenverflüssigung. „Dieses Phänomen kennen wir als Küsteningenieure schon lange“, sagt Professor Nils Goseberg, Leiter der Abteilung Hydromechanik, Küsteningenieurwesen und Seebau am LWI. „Dadurch sind bereits große Bauwerke, wie zum Beispiel Wellenbrecher, bei Sturm im Boden eingesunken.“ Eine Fluidisierung des Meeresbodens wollen die Wissenschaftlerinnen und Wissenschaftler deshalb unbedingt vermeiden.

Diese könnte bei schwimmenden Windkraftwerken eintreten, wenn die Stahlseile, über die Schwimmkörper und Schwergewichtsanker miteinander verbunden sind, durch starke Wellenbewegungen zyklisch am Fundament wackeln. „Bestimmte Böden werden dann wie Teig und können dadurch die Ankerkräfte nicht mehr übertragen“, erklärt Professor Goseberg. Im schlimmsten Fall rutsche die gesamte Anlage weg. Ziel müsse also sein, das Offshore-Windkraftwerk möglichst stabil zu halten, sagt Goseberg. „Je seltener die Windenergie-Anlage wegen schlechten Wetters, hohen Seegangs oder zu starken Windes abgeschaltet werden muss, desto besser ist es für die Energieausbeute bzw. für die Levelized Cost of Energy, also den Preis, den man aufbringen muss, um diese Energie zu ernten.“

Simulation im Computermodell und Experimente im Wellenkanal

In einem Computermodell wollen die Forschenden dieses Phänomen simulieren und damit ein Werkzeug entwickeln, das den planenden Ingenieurinnen und Ingenieuren hilft, Fragestellungen zu Anker-Design, Bodenart und Standortwahl zu beantworten. „Mit unserem Tool zeigen wir, wie der Boden um einen Anker einer schwimmenden Offshore-Windenergieanlage verflüssigt und können daraufhin das Design der Anlage anpassen und optimieren“, erläutert Dr. Christian Windt vom LWI, der das Verbundprojekt koordiniert.

Erste Vergleichsdatensätze erheben die Wissenschaftlerinnen und Wissenschaftler durch Experimente im kleinen Maßstab mit den Partnern in Polen, die sie dann mit einer groß-skaligen Experimentalkampagne im neu ausgebauten Großen Wellenkanal des Forschungszentrums Küste in Hannover ergänzen. Im groß-skaligen Modell wird beispielhaft ein patentiertes Multifunktions-Schwimmplattform-System der Firma GICON zum Einsatz kommen, das unter verschiedenen Wellengrößen und Meeresströmungen sowie mit verschiedenen Böden untersucht werden wird. „Die Herausforderungen sind groß: Durch den Klimawandel werden die Wellen größer, die Stürme werden zunehmen. Dort brauchen wir Forschung, um dem Markt die Antworten zu geben, die jetzt für die Energiewende notwendig sind“, so Professor Goseberg. Die NuLIMAS-Toolbox wird nach Abschluss des Projekts frei verfügbar sein.

Projektdaten:
Das Verbundprojekt „NuLIMAS – Numerische Modellierung von Bodenverflüssigung um marine Strukturen“ wird durch den ERA-NET Cofund MarTERA im Rahmen des Horizont-2020-Programms der Europäischen Union gefördert. Weitere Fördermittel kommen vom deutschen Bundesministerium für Wirtschaft und Energie (BMWi), der Türkischen Anstalt für Wissenschaftliche und Technologische Forschung (TÜBIKTAK) und dem polnischen Narodowe Centrum Badań i Rozwoju (NCBR). Die Fördersumme beläuft sich auf insgesamt 1,4 Millionen Euro. Der Förderanteil der TU Braunschweig liegt bei rund 521.500 Euro. Neben dem Leichtweiß-Institut für Wasserbau (LWI) der TU Braunschweig sind das Forschungszentrum Küste (FZK), das Institute of Hydro-Engineering of Polish Academy of Sciences (IBW) sowie GICON, WIKKI und BM SUMER als Industriepartner beteiligt.

Weitere Informationen: http://nulimas.info

Interview mit Dr. Christian Windt
Im Interview im Magazin der TU Braunschweig berichtet NuLIMAS-Koordinator Dr. Christian Windt über die Entwicklung des Computermodells und seine Forschung zur Wellenenergie:
https://magazin.tu-braunschweig.de/m-post/die-energie-von-wellen-und-wind/

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Nils Goseberg
Technische Universität Braunschweig
Leichtweiß-Institut für Wasserbau
Abteilung Hydromechanik, Küsteningenieurwesen und Seebau
Beethovenstraße 51a
38106 Braunschweig
Tel.: 0531 391-3930
E-Mail: n.goseberg@tu-braunschweig.de
www.tu-braunschweig.de/lwi/hyku

Dr. Christian Windt
Technische Universität Braunschweig
Leichtweiß-Institut für Wasserbau
Abteilung Hydromechanik, Küsteningenieurwesen und Seebau
Beethovenstraße 51a
38106 Braunschweig
Tel.: 0531 391-3988
E-Mail: c.windt@tu-braunschweig.de
www.tu-braunschweig.de/lwi/hyku

http://www.tu-braunschweig.de/

Media Contact

Bianca Loschinsky Presse und Kommunikation
Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…