Hochschule Hannover auf Innovationskurs zur Verbesserung von Elektrofahrantrieben

So soll es zukünftig nicht mehr aussehen - defektes Lager durch Stromdurchgang © Foto: Prof. Dr.-Ing. Carsten Fräger

Mobilität ist ein wichtiges Element für unsere Gesellschaft und für die Lebensqualität der Einzelnen. In den letzten Jahren wurde die Elektromobilität des Individualverkehrs bereits stark erforscht. Ungeachtet großer Fortschritte hat sich die KFZ-gebundene Elektromobilität bisher jedoch nicht durchgesetzt.

Elektrofahrzeuge werden derzeit nur in kleinen Stückzahlen gefertigt. Trotz finanzieller Anreize aus öffentlicher Hand werden sie nur vereinzelt verkauft. Häufig entsprechen Leistung und Lebensdauer nicht den Vorstellungen der Kaufenden. Langfristig gesehen soll Elektromobilität die Ressourcen fossiler Brennstoffe schonen und zu einer Reduzierung des Ausstoßes von Treibhausgasen dienen.

Dies gelingt jedoch nur, wenn die Elektrofahrzeuge zuverlässig fahren und eine gute Lebensdauer aufweisen. Ein Problem sind offene Punkte hinsichtlich der Zuverlässigkeit. Hierfür will das Projekt der Hochschule Hannover und ihrem Kooperationspartner EM-Motive GmbH mit Sitz in Hildesheim eine Lösung erarbeiten.

Schäden an einzelnen Bestandteilen der Elektrofahrantriebe, wie beispielsweise die Lager, sind häufig der Grund eines Defektes des gesamten Elektromotors. Fällt das Lager aus, dreht sich der Rotor nicht mehr und der Antrieb ist funktionslos. Die Lagerausfälle können durch sogenannte Lagerströme verursacht werden.

Durch das Projekt „SYM-LStrom“ sollen kostengünstige und wirkungsvolle Maßnahmen gegen eben solche Lagerausfälle durch Lagerströme erarbeitet werden. Durch diese liefert das Projekt einen konkreten und wirkungsvollen Beitrag zur Energiewende im Verkehr durch bezahlbare Elektrofahrzeuge. Die Lösung soll, entgegen bisheriger Ansätze, für die Großserienfertigung geeignet sein.

Stand des Wissens

Die Antriebstechnik für Elektrofahrzeuge baut vielfach auf Synchronmotoren mit Permanentmagneten auf. Zurzeit weisen diese die höchste Leistungsdichte auf. Alternativ kommen elektrisch erregte Synchronmaschinen oder Asynchronmaschinen zum Einsatz, die im Vergleich eine etwas geringere Leistungsdichte haben.

In den Umrichtern der Antriebe kommen schnell schaltende Leistungshalbleiter zum Einsatz. Die Halbleiter zeichnen sich zum einen durch eine hohe elektrische Spannung und zum anderen durch sehr kurze Schaltzeiten aus. Sie versorgen die E-Maschine mit Spannungsimpulsen.

Über Pulsmuster und Zeitdauer werden Spannung und Strom so eingestellt, dass das erforderliche Drehmoment im Motor- und Generatorbetrieb erzeugt wird. Allerdings sorgen die Impulse auch für starke Ströme durch die Auf- und Umladung der Wicklungskapazitäten. Ein Teil dieser Ladeströme fließt durch die Lager der Elektromaschine. Sind die Spannungen an den Lagern so groß, dass die Isolierschicht aus dem Wälzlagerfett durchbricht, bilden die Entladeströme Funken im Lager.

Diese führen wiederum zu einer Aufschmelzung der Laufbahnen und somit zu einem vorschnellen Verschleiß der Lager. Verstärkt wird dieser Effekt durch den Einsatz der neuen, besonders schnell schaltenden SiC-Halbleiter. Dieser Verschleiß ist bei aktuellen Antrieben für Elektrofahrzeuge im Labor bei EM-Motive beobachtet worden.

Zur Vermeidung der Ausfälle in Fahrzeugen stehen zurzeit nur teure Maßnahmen zur Verfügung, die für Großserienanwendungen ungeeignet sind. In diesem Projekt soll die Lebensdauer bei der gleichzeitigen Belastung mit mechanischen Kräften und elektrischen Strömen in den Lagern behandelt werden. Es sollen kostengünstige Maßnahmen gegen Ausfälle der Lager durch eine kombinierte elektrische und mechanische Belastung der Lager erarbeitet werden.

Technische Ziele
– Zuverlässiger Schutz vor einem Lagerausfall bei Elektrofahrzeugen
– Großserientaugliche Lösung mit geringen Kosten
– Vermeidung von Lagerausfällen bei Elektro-Traktionsantrieben mit Umrichter gespeisten elektrisch erregten oder permanentmagnet-erregten Synchronmaschinen
– Reduzierung der elektrischen Belastung Lagerstrom

Wissenschaftliche Ziele
– Mechanismen der Lagerströme und die Wirkung in Synchronmaschinen auf den Lagerausfall genau erfassen
– Zuverlässiges Berechnungsmodell für die Vorhersage von Lagerschäden erstellen

Wirtschaftliche Ziele
– Kostengünstige Realisierung von Traktionsantrieben für Elektrofahrzeuge sichern
– Dadurch Arbeitsplätze sichern und Export-Chancen verbessern

Arbeitsplan des Projektes
Das von März 2019 bis August 2021 laufende Projekt ist in folgende Arbeitsbereiche unterteilt:
1. Auswertung von Anforderungen an die Fahrantriebe
2. Messung der Lagerstrombelastung sowie der Auswirkung verschiedener Maßnahmen darauf
3. Berechnung der Lagerstrombelastung sowie Auswirkung verschiedener Maßnahmen darauf
4. Bestimmung der Lebensdauer in Abhängigkeit von den elektrischen und mechanischen Belastungen
5. Auswahl der Maßnahmen zur Sicherstellung der Lebensdauer

Prof. Dr.-Ing. Carsten Fräger
Hochschule Hannover
Fakultät II
Institut für Konstruktionselemente, Mechatronik, Elektromobilität
Ricklinger Stadtweg 120
D-30459 Hannover
Raum: 1B.1.28
Tel: +49 511 9296 1383
carsten.fraeger@hs-hannover.de

http://www.hs-hannover.de
http://www.ikme.wp.hs-hannover.de/

Media Contact

Melanie Bünn idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…