30 Jahre nach C60-Entdeckung: Käfigmolekül aus Silizium

Der Si20-Dodekaeder ist ungefähr so groß wie das C60- Molekül. Entscheidende Unterschiede bestehen jedoch zwischen den Bindungsverhältnissen: Alle Kohlenstoffatome des C60 sind dreifach koordiniert und bilden Doppelbindungen aus.

Im Silizium-Dodekaeder sind dagegen alle Atome vierfach koordiniert und über Einfachbindungen verknüpft, so dass auch eine Verwandtschaft zum Dodekahedran (C20H20) besteht.

„Das Dodekahedran galt seinerzeit als ‚Mount Everest‘ der Organischen Chemie, weil es zunächst nur über eine 23-stufige Synthesesequenz zugänglich war. Im Gegensatz dazu bildet sich unser Si20-Käfig, ausgehend von Si2-Bausteinen, in einem Schritt“, so Prof. Matthias Wagner vom Institut für Anorganische und Analytische Chemie der Goethe-Universität.

Die Si20-Hohlkörper, die sein Doktorand Jan Tillmann isoliert, sind stets mit einem Chlorid-Ion gefüllt. Die Frankfurter Chemiker vermuten daher, dass sich der Käfig um das Anion herum aufbaut und dieses somit einen strukturbestimmenden Einfluss ausübt. Auf seiner Oberfläche trägt der Cluster acht Chloratome und zwölf Cl3Si-Gruppen.

Sie weisen hochsymmetrisch in den Raum, wodurch das Molekül eine besondere Schönheit gewinnt. Quantenchemische Rechnungen aus dem Arbeitskreis von Professor Max C. Holthausen an der Goethe-Universität belegen, dass das experimentell beobachtete Substitutionsmuster eine ausgeprägte Stabilisierung des Si20-Gerüsts bewirkt.

Künftig wollen Tillmann und Wagner mithilfe der oberflächengebundenen Cl3Si-Ankergruppen dreidimensionale Nanonetzwerke aus Si20-Einheiten herstellen. Insbesondere interessieren sich die Forscher jedoch für das Anwendungspotential der neuen Verbindung:

„Räumlich strikt begrenzte Silizium-Nanopartikel zeigen fundamental andere Eigenschaften als konventionelle Siliziumwafer“, erläutert Matthias Wagner. Daher eröffnet der lange gesuchte Zugang zum Siladodekahedran die Möglichkeit, fundamentale elektronische Eigenschaften käfigartiger Si-Nanopartikel im Vergleich zu kristallinem Halbleitersilizium zu studieren.

Publikation:
J. Tillmann et al: One-Step Synthesis of a [20]Silafullerane with an Endohedral Chloride Ion, in: Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201412050

Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/54612947

Informationen: Prof. Matthias Wagner, Institut für Anorganische und Analytische Chemie, Campus Riedberg, Tel.: (069)-798-29156, Matthias.Wagner@chemie.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…