Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Dr. Anna-Maria Möller, Erstautorin der aktuellen Arbeit, und Prof. Dr. Franz Narberhaus (links) widmen sich der Wirkungsweise von antibiotischen Wirkstoffen.
© RUB, Marquard

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und Mikrobiologen der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum haben die Wirkung von fünf verschiedenen Substanzen verglichen, die den Aufbau dieser äußeren Membran hemmen. Neben den erwarteten Konsequenzen fanden sie – je nach Substanz – eine Reihe von zusätzlichen zellulären Antworten der bakteriellen Zelle.

Die Ergebnisse können helfen, das Anwendungspotenzial solcher Inhibitoren besser einzuschätzen und wurden am 6. März 2024 im Journal of Biological Chemistry veröffentlicht.

Ansteigende Antibiotika-Konzentrationen - von links nach rechts - hemmen das Wachstum der Bakterien, erkennbar an der Trübung.
Ansteigende Antibiotika-Konzentrationen – von links nach rechts – hemmen das Wachstum der Bakterien, erkennbar an der Trübung. © RUB, Marquard

Die äußere Membran Gram-negativer Bakterien als Angriffspunkt für Antibiotika

Seit mehr als hundert Jahren werden Bakterien aufgrund ihres Färbeverhaltens in Gram-positive und Gram-negative Bakterien eingeteilt. Gram-negative Krankheitserreger stellen eine besondere Herausforderung dar, weil sie von einer zweiten Membran umgeben sind, die viele Antibiotika nicht passieren lässt. „Andererseits sind die Enzyme, die diese äußere Membran herstellen, einzigartig und sind deshalb interessante Angriffspunkte für spezifische Antibiotika gegen diese Gruppe von Bakterien“ erklärt Prof. Dr. Franz Narberhaus, Inhaber des Lehrstuhls für Biologie der Mikroorganismen und Leiter der Studie.

Schlüsselenzym kann gehemmt werden

Ein besonders attraktives Ziel für die Antibiotika-Entwicklung ist das Enzym LpxC, das den ersten unumkehrbaren Schritt in der Biosynthese der äußeren Membran von Gram-negativen Bakterien katalysiert. Um zu erfahren, wie das Modellbakterium Escherichia coli auf die Blockierung dieses Enzymes reagiert, haben die Forschenden die zelluläre Antwort auf fünf verschiedene LpxC-Inhibitoren miteinander verglichen. Alle fünf Substanzen konnten an LpxC binden und dieses Enzym hemmen, was zu einer Akkumulation von inaktivem LpxC in den Bakterienzellen führte. Außerdem wurden die Bakterien durch alle fünf Substanzen abgetötet, allerdings mit deutlich unterschiedlicher Effizienz.

Gleich und doch nicht gleich

Obwohl alle Inhibitoren an der gleichen Stelle angreifen, gab es eine Reihe von substanzspezifischen Unterschieden in der bakteriellen Antwort auf die Behandlung. Vier der Substanzen veränderten das Gleichgewicht in der Membranzusammensetzung, ein Zeichen für akuten Membranstress. Einige Substanzen induzierten eine generelle Stressantwort oder griffen in Stoffwechselwege ein, die nicht in direktem Zusammenhang mit der Membran-Biosynthese stehen. „Wir lernen daraus, dass man genau hinschauen sollte, was in den Bakterien passiert, bevor man solche Substanzen einsetzt“, warnt Prof. Dr. Julia Bandow, Leiterin des Centers für systembasierte Antibiotikaforschung CESAR, in dem ein Teil der Studien durchgeführt wurde. Selbst wenn das gleiche Enzym gehemmt wird, heißt das nicht automatisch, dass die zellulären Antworten der Bakterien identisch sind.

Neue antimikrobielle Wirkstoffe mit großem Potenzial

Leider sind alle bisher verfügbaren LpxC-Inhibitoren aufgrund von Nebenwirkungen an Mensch und Tier für eine klinische Anwendung ungeeignet. Hoffnung macht allerdings ein vor wenigen Monaten beschriebener neuer LpxC-Inhibitor, der sehr effizient bakterielle Infektionen bekämpft und dabei frei von Nebenwirkungen ist, zumindest im Tiermodell. „Wir sind nun sehr daran interessiert zu testen, wie Bakterien auf diese Substanz reagieren“, so Franz Narberhaus. In Zukunft soll auch die bakterielle Antwort auf andere Wirkstoffe, die an früheren oder späteren Schritten der Biosynthese der äußeren Membran angreifen, untersucht werden. Trotz des großen Potenzials solcher Antibiotika ist über deren Wirkmechanismus und die bakterielle Reaktion darauf erst wenig bekannt.

Förderung

Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft im Rahmen des Graduiertenkollegs 2341 „Microbial Substrate Conversion“ (MiCon) und des Schwerpunktprogramms SPP1879 „Nucleotide second messenger signaling in bacteria“, das Land Nordrhein-Westfalen und die Europäische Union (Center for System-based Antibiotic Research, CESAR).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Franz Narberhaus
Lehrstuhl für Biologie der Mikroorganismen
Fakultät für Biologie und Biochemie
Ruhr-Universität Bochum
Tel: +49 234 32 23100
E-Mail: franz.narberhaus@ruhr-uni-bochum.de

Originalpublikation:

Anna-Maria Möller et al.: Common and Varied Molecular Responses of Escherichia coli to Five Different Inhibitors of the Lipopolysaccharide Biosynthetic Enzyme LpxC, in: Journal of Biological Chemistry, 2024, DOI: 10.1016/j.jbc.2024.107143

https://news.rub.de/presseinformationen/wissenschaft/2024-03-15-antibiotika-gleicher-angriffspunkt-unterschiedliche-wirkung

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….