Atemwegsstents, die nicht verrutschen

Forscher am Fraunhofer IGB wollen Atemwegsstents mit Plasmatechnik so beschichten, dass sie in das umgebende Gewebe einwachsen. Copyright Bild: Leufen Medical.

In der Gefäßchirurgie werden Stents als Stützen für verengte Blutgefäße eingesetzt. Auch die Luftröhre, die Trachea, kann verengt werden – durch gutartige oder bösartige Gewebewucherungen.

Zur Behandlung der hierdurch entstehenden Atemnot setzen Ärzte zunehmend auch hier einen Stent ein – eine gitterartige Röhre aus Metall oder Kunststoff, die durch Dehnung ein Zuwachsen der Luftröhre verhindert.

Mitunter kommt es jedoch zu gefährlichen Komplikationen: Der Stent kann in der Luftröhre nach unten verrutschen und so die Luftröhre und die dahinterliegenden Bronchien teilweise oder sogar ganz verschließen. Nach der Implantation kommt es zudem bei vielen Patienten zu bakteriellen Infektionen der Atemwege.

Durch eine spezielle Beschichtung der Atemwegsstents wollen Forscher am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart die Nachteile bisheriger Stents nun beheben. Professor Heike Walles, Leiterin der Abteilung Zellsysteme am Fraunhofer IGB, setzt hierbei auf die von Kollegen am IGB etablierte Plasmatechnik, bei der ein im Vakuum ionisiertes Gas zu Modifikationen der Oberfläche führt. »Damit können wir auf schonende Weise anschließend biofunktionelle Substanzen auf dem Stent anbringen, die mit den Zellen quasi kommunizieren«, so Walles. Für die Beschichtungen verwenden die Forscher einen handelsüblichen sowie einen neu entwickelten Trachea-Stent der Firma Leufen Medical.

Um das Einwachsen des Stents in das umgebende Trachea-Gewebe zu ermöglichen, wollen die Forscher wahlweise biologische Proteine wie Kollagen oder Fibronektin, synthetische Polymere aus organischen Säuren oder menschliche Wachstumsfaktoren an die Stentoberfläche anbinden. Die antimikrobiellen Eigenschaften sollen durch Nano-Silberpartikel vermittelt werden. Der Erfolg der jeweiligen Oberflächenbeschichtung muss anschließend eingehend untersucht werden. Ob die Stents tatsächlich eine Besiedlung mit Bakterien verhindern, wird im Labor mit typischen Krankheitserregern als Testorganismen geprüft. »Auch das An- und Einwachsen von Atemwegszellen testen wir zunächst im Labor mit Hilfe spezieller Zellkulturen. Hierzu bringen wir die beschichteten Stents mit menschlichen Atemwegsbindegewebszellen und -epithelzellen in Zellkulturgefäßen zusammen«, erklärt Projektleiter Dr. Steffen Koch, Zellbiologe am Fraunhofer IGB.

Ist die Beschichtung erfolgreich, das heißt werden die ausgerüsteten Stents von Atemwegszellen besiedelt und bewachsen und bilden diese sogar das typische Flimmerepithel aus, können sie im Tierversuch getestet werden. Abschließend werden zusammen mit der zum Robert-Bosch-Krankenhaus Stuttgart gehörenden Klinik Schillerhöhe klinische Studien durchgeführt.

Das Projekt »Bioaktive Oberflächenbeschichtungen für Atemwegsstents« wird vom Bundesministerium für Bildung und Forschung (BMBF) im Programm »Gesundheitsregionen der Zukunft« gefördert. Bei diesem Wettbewerb ging die BioRegio STERN Management GmbH mit ihrem Konzept »REGiNA – Anwendungszentrum für Regenerative Medizin in der Gesundheitsregion Neckar-Alb und Stuttgart« als einer von zwei Siegern der ersten Förderrunde hervor. Das Fraunhofer IGB ist einer der Forschungspartner von REGiNA.

Media Contact

Dr. Steffen Koch Fraunhofer-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…