Ausgehungert – Neuer Wirkstoff hemmt das Wachstum von Krebszellen
Ein neu entwickelter Wirkstoff lässt Krebszellen aushungern, indem er ihre „Kraftwerke“ – die sogenannten Mitochondrien – angreift. Der neue Wirkstoff verhindert das Ablesen der genetischen Information der Mitochondrien. Wissenschaftler*innen des Max-Planck-Instituts für Biologie des Alterns, des Stockholmer Karolinska Instituts und der Universität Göteborg berichten in ihrer in der renommierten Fachzeitschrift Nature veröffentlichten Studie, dass die chemische Verbindung auch Potential für die Krebstherapie bei Menschen haben könnte.
Die Hemmung der Genexpression in Mitochondrien von Mäusen stoppt das Wachstum von Krebszellen
Mitochondrien versorgen unsere Zellen mit Energie und Bausteinen, die für die normale Funktion von Geweben und Organen unerlässlich sind. Lange Zeit ging man allerdings davon aus, dass das Wachstum von Krebszellen weniger stark vom Beitrag der Mitochondrien abhängt. Diese seit langem bestehende Lehrmeinung wurde jedoch in den letzten Jahren zunehmend in Frage gestellt. Besonders Krebsstammzellen sind in hohem Maße vom mitochondrialen Stoffwechsel abhängig. Aufgrund der zentralen Rolle der Mitochondrien für die normale Gewebefunktion und weil Medikamente, die auf die Mitochondrienfunktionen abzielen, normalerweise sehr toxisch sind, hat es sich bisher als schwierig erwiesen, Mitochondrien im Rahmen der Krebsbehandlung gezielt anzugreifen.
Jetzt hat ein internationales Forscherteam einen Weg gefunden, diese Schwierigkeiten zu überwinden. „Es ist uns gelungen, ein potenzielles Krebsmedikament zu entwickeln, das auf die Funktion der Mitochondrien abzielt, ohne schwere Nebenwirkungen zu verursachen und ohne gesunde Zellen zu schädigen“, erklärt Nina Bonekamp, eine der beiden Hauptautor*innen der Studie. Mitochondrien enthalten ihr eigenes genetisches Material, die mitochondrialen DNA-Moleküle (mtDNA). Das Ablesen dieser Gene wird durch einen speziellen Satz von Proteinen gesteuert. Eines dieser Proteine ist das Enzym „mitochondriale RNA-Polymerase“, abgekürzt POLRMT. „Unsere früheren Studien haben gezeigt, dass sich schnell vermehrende Zellen, wie z.B. embryonale Zellen, sehr empfindlich auf eine Hemmung der mtDNA-Expression reagieren, während differenzierte Gewebe wie Skelettmuskel diesen Zustand überraschend lange tolerieren können. Wir kamen zu dem Schluss, dass POLRMT als ein Schlüsselregulator der mtDNA-Expression ein vielversprechendes Ziel darstellen könnte“, sagt Nils-Göran Larsson, Leiter des Forschungsteams.
In Zusammenarbeit mit dem Lead Discovery Center, einer von Max-Planck-Innovation gegründeten Einrichtung für translationale Wirkstoffforschung, entwickelte das Forschungsteam eine Hochdurchsatz-Testmethode zur Identifikation eines POLRMT-hemmenden Wirkstoffs. Der POLRMT-Hemmer verringerte die Lebensfähigkeit von Krebszellen stark und verlangsamte das Tumorwachstum in tumortragenden Mäusen signifikant. Gleichzeitig wurde der Wirkstoff aber gut von den Tieren vertragen. „Unsere Daten deuten darauf hin, dass wir Krebszellen im Grunde aushungern und so zum Sterben bringen. Das gelingt, zumindest für eine gewisse Zeit, ohne große, toxische Nebenwirkungen. Dies gibt uns ein potenzielles therapeutisches Zeitfenster für die Behandlung von Krebs“, sagt Nina Bonekamp. „Ein weiterer Vorteil unseres Hemmstoffs ist, dass wir genau wissen, wo er an POLRMT bindet und was er mit dem Protein macht. Das steht im Gegensatz zu einigen anderen Medikamenten, die sich sogar im klinischen Einsatz befinden“. Mit Hilfe der ACUS-Laboratorien in Köln und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen identifizierte das Team die chemische Bindungsstelle des Inhibitors und erhielt Informationen über die Struktur des Komplexes aus POLRMT und Inhibitor.
Bonekamp und Larsson sind sich einig, dass es ein spannendes Unterfangen war, grundlegende Erkenntnisse in ein potenzielles Medikament umzusetzen. Umso mehr freuen sie sich über die Möglichkeiten, die ihre Erkenntnisse eröffnen werden. „Angesichts der zentralen Rolle des mitochondrialen Stoffwechsels innerhalb der Zelle bin ich sicher, dass unser Inhibitor als Werkzeug in einer Vielzahl von Bereichen Verwendung finden wird „, erklärt Nina Bonekamp. „Natürlich ist es faszinierend, sein Potenzial als Krebsmedikament weiter zu verfolgen, aber auch als Modellverbindung, um die zellulären Auswirkungen mitochondrialer Funktionsstörungen und mitochondrialer Erkrankungen besser zu verstehen.“
Wissenschaftliche Ansprechpartner:
Korrespondierende Autorin: Dr. Nina Bonekamp
Max-Planck-Institut für Biologie des Alterns, Köln
Tel.: +49 (0)221 379 70 742
E-Mail: nina.bonekamp@age.mpg.de
Presse und Öffentlichkeitsarbeit: Kai Fiedler
Tel.: +49 (0)221 379 70 307
Max-Planck-Institut für Biologie des Alterns, Köln
E-Mail: kai.fiedler@age.mpg.de
Originalpublikation:
Nina A. Bonekamp*, Bradley Peter*, Hauke S. Hillen, Andrea Felser, Tim Bergbrede, Axel Choidas, Moritz Horn, Anke Unger, Raffaella di Lucrezia, Ilian Atanassov, Xinping Li, Uwe Koch, Sascha Menninger, Joanna Boros, Peter Habenberger, Patrick Giavalisco, Patrick Cramer, Martin S. Denzel, Peter Nussbaumer, Bert Klebl, Maria Falkenberg, Claes M. Gustafsson and Nils-Göran Larsson.
Small molecule inhibitors of human mitochondrial DNA transcription.
Nature, 2020; online: 16.12.2020
https://www.nature.com/articles/s41586-020-03048-z
*Gleichberechtigte Erstautor*innen
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…