Bakterielle Signalgeber im Boden
Bakterien der Gattung Streptomyces produzieren chemische Stoffe, als Arginoketide bezeichnet, auf die viele andere Mikroorganismen reagieren: Bakterien bilden daraufhin Biofilme, Algen schließen sich zu Aggregaten zusammen und Pilze bilden gleichfalls Signal-Stoffe, die sie sonst nicht produzieren und die auf weitere Organismen wirken. Das zeigt eine Studie von Forschenden des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie (Leibniz-HKI), für die sie verschiedene Streptomyces-Arten, die von ihnen gebildeten Arginoketide und deren Einfluss auf andere Boden-Mikroorganismen erforschten.
Auch wenn Mikroorganismen nicht sprechen können, kommunizieren sie miteinander. Dafür nutzen sie chemische Stoffe, die von anderen Mikroorganismen als Signale verstanden werden. „Das sind relativ kleine organische Verbindungen, sogenannte Naturstoffe“, erklärt Axel Brakhage, Studienleiter sowie Direktor des Leibniz-HKI und Professor an der Friedrich-Schiller-Universität Jena. „Mikroorganismen produzieren eine Vielzahl solcher Stoffe und wir beginnen gerade erst, diese Sprache zu verstehen.“
Bakterien der Gattung Streptomyces sind für die Kommunikation im Boden offenbar besonders wichtig. Sie kommen weltweit vor und produzieren viele verschiedene Arginoketide – das haben Forschende des Leibniz-HKI in einer Studie erforscht, deren Ergebnisse kürzlich in Nature Microbiology veröffentlicht wurden. Arginoketide sind eine Untergruppe der Polyketide – eine Gruppe von Naturstoffen, die von verschiedenen Organismen produziert werden. Viele Polyketide sind medizinisch interessant, weil sie zum Beispiel antibiotisch sind oder gegen Krebszellen wirken.
Die vom Team des Leibniz-HKI identifizierte Gruppe der Arginoketide stößt verschiedene Prozesse im Boden an. „In vorherigen Studien haben wir bereits gesehen, dass der Pilz Aspergillus nidulans manche Stoffe nur in Anwesenheit von Streptomyzeten produziert“, sagt Maria Stroe, eine der beiden Erstautor*innen der Studie. Als verantwortlich dafür wurde das Arginoketid Azalomycin F identifiziert.
Die Forschenden untersuchten deshalb für die aktuelle Studie, ob Streptomyzeten noch weitere Verbindungen produzieren, die als Signalstoffe aktiv sind. „Durch eine Literatursuche haben wir eine Vielzahl von Beispielen gefunden, bei denen Streptomyces-Arten weltweit strukturell ähnliche Verbindungen produzieren oder jedenfalls Biosynthese-Gencluster für entsprechende Arginoketide besitzen“, erklärt Mario Krespach, Erstautor der Studie.
Einige dieser Verbindungen isolierten die Forschenden aus Streptomyces-Stämmen aus Bodenproben und testeten sie erfolgreich am Schimmelpilz Aspergillus nidulans – sie lösten bei dem Pilz ebenfalls die Produktion chemischer Stoffe aus, die er sonst nicht produziert. „Wir haben deswegen vermutet, dass wir möglicherweise einen generellen Mechanismus der mikrobiellen Kommunikation gefunden haben“, so Lukas Zehner, ebenfalls ein Autor der Studie.
Und tatsächlich fand das Team in Bodenproben eine Vielzahl von Pilzen, die in Gegenwart von Streptomyces iranensis Stoffe bildeten, die sie sonst nicht bilden. Schalteten die Forschenden die entsprechenden Biosynthesegene für Arginoketide aus, blieb auch der Effekt aus.
Frühere Studien zeigten zahlreiche Aktivitäten von Arginoketiden – sie bringen beispielsweise einen Pilz und eine Grünalge dazu, eine Symbiose einzugehen, ein anderer Pilz verändert seine Gestalt und ein Bakterium bildet in Reaktion auf die Substanzen einen Biofilm.
„Wir versuchen nun zu verstehen, welche Auswirkungen die Produktion von Arginoketiden selbst und auch die dann in einer zweiten Welle produzierten Substanzen aus Pilzen auf die Zusammensetzung von mikrobiellen Gemeinschaften, den Mikrobiomen, haben“, so Studienleiter Brakhage. Einer der durch Aspergillus nidulans produzierten Stoffe hemmt beispielsweise einen pflanzenpathogenen Pilz. Die Wirkungen der Arginoketide auf Algen und Pilze könnten auch zur Evolution von Flechten und Vielzelligkeit beigetragen haben.
„Dieses Zusammenspiel aufzuklären hilft uns unter anderem zu verstehen, wie mikrobielle Gemeinschaften strukturiert werden und wie sie Pflanzenkrankheiten verhindern helfen. Außerdem entdecken wir ganz neue Substanzen, wenn wir das Zusammenleben von Mikroorganismen erforschen, anstatt uns nur isolierte Organismen anzuschauen“, erklärt Brakhage.
Die Studie wurde durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Balance of the Microverse und der Sonderforschungsbereiche FungiNet (Transregio) und ChemBioSys, sowie durch die Leibniz-Gemeinschaft im Rahmen des Leibniz-Wettbewerbs unterstützt.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Axel Brakhage
Wissenschaftlicher Direktor Leibniz-HKI
Leiter der Abteilung Molekulare und Angewandte Mikrobiologie
mam.office@leibniz-hki.de
Originalpublikation:
Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA (2023) Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nature Microbiology, https://doi.org/10.1038/s41564-023-01382-2
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane
…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….
Neue Perspektiven für die Materialerkennung
SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…
Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck
Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…