Bakterien auf Beutezug
Forschungsteam der Friedrich-Schiller-Universität Jena entdeckt Einzeller, die es eigentlich nicht geben sollte.
Alle höheren Organismen wie Pilze, Pflanzen, Tiere und Menschen bestehen aus eukaryotischen Zellen. Das sind Zellen, die einen Zellkern und Organellen wie Mitochondrien besitzen. Mitochondrien versorgen eukaryotische Zellen mit Energie. Im Gegensatz zu den Eukaryoten sind die Prokaryoten einzellige Organismen. Sie sind einfacher aufgebaut und in der Regel viel kleiner als Eukaryoten. Sie haben keinen Zellkern und keine Organellen.
Die Entstehung der Eukaryoten gilt als eines der größten ungelösten Rätsel der Biologie: Nach derzeitiger Lehrmeinung sollen zwei Prokaryoten, ein sogenanntes Asgard-Archaeon und ein Bakterium, verschmolzen sein. Dabei soll sich das Bakterium zum Mitochondrium entwickelt haben. Dieser eukaryotische Vorfahre hatte durch sein Mitochondrium genug Energie zur Verfügung, um sich zu den heute bekannten komplexeren Zellen weiterzuentwickeln. Ein wesentliches Merkmal solcher komplexen Eukaryoten ist die Endozytose – die Fähigkeit, andere Zellen zu fressen. Es galt bisher jedoch als energetisch unmöglich, dass eine prokaryotische Zelle zur Endozytose in der Lage ist, da hierfür die Energiequelle des Mitochondriums als unverzichtbar galt. Ein Forschungsteam der Universität Jena hat jedoch prokaryotische Bakterien entdeckt, die andere Zellen fressen können. Über diesen überraschenden Fund berichtet das Team im Fachmagazin „mBio“.
Planctomyceten: „unmögliche“ Prokaryoten
Seit mehr als zehn Jahren verfolgen Prof. Dr. Christian Jogler und sein Team einen anderen Ansatz, die Eukaryogenese zu erklären. Der Forscher konzentriert sich auf die prokaryotische Gruppe der Planctomyceten, sehr ungewöhnliche Bakterien, die von einigen Wissenschaftlern auf Grund ihrer ungewöhnlichen Zellbiologie als potenzielle Vorfahren der Eukaryoten angesehen werden. „Die Idee einer ‚Fusion‘ zweier unterschiedlicher Prokaryoten zu einem Eukaryoten erscheint mir aus zellbiologischer Sicht nicht nachvollziehbar“, erklärt der Mikrobiologe, der an der Universität Jena im Exzellenzcluster „Balance of the Microverse“ forscht. „So etwas hat noch nie jemand beobachten können und ein solches Mischwesen wäre auf Grund der unterschiedlichen Membranstrukturen und molekularen Maschinerien vermutlich nicht lebensfähig“, ergänzt Jogler.
Mikrobenjäger
2014 fand das Team um Prof. Dr. Jogler in Heiligendamm an der Ostsee erstmals neuartige Planctomyceten, die Argumente für den planctomycetalen Ursprung der Eukaryoten lieferten. „Diese Bakterien verändern ihre Gestalt, sie ‚laufen‘ über Oberflächen und umfließen einander.“ Auch ein Team um Takashi Shiratori aus Japan hat 2019 vergleichbare Planctomyceten gefunden und beschrieben. Diese Mikroorganismen fraßen sogar andere Bakterien und schienen damit die Lehrmeinung zu widerlegen, Prokaryoten könnten aus energetischen Gründen nicht zur Endozytose befähigt sein.
„Ehrlich gesagt habe ich Dr. Shiratori anfangs nicht geglaubt“, sagt Jogler. Er und sein Team haben deshalb zunächst versucht, die Hypothese der prokaryotischen Endozytose zu widerlegen. Nach einem Jahr intensiver Forschung haben die Forschenden allerdings keinen Zweifel mehr an der Richtigkeit von Shiratoris Resultaten. In ihrer jetzt vorgelegten Arbeit stellen sie einen vergleichbaren Organismus vor, den sie aus der Nordsee isoliert und charakterisiert haben: Uabimicrobium helgolandensis. Auch diese Prokaryoten fressen andere Bakterien und auch diese Organismen sollte es deshalb gar nicht geben dürfen. Die Forschenden haben diese Gruppe von außergewöhnlichen Planctomyceten den passenden Namen bacteria of prey gegeben – Raubbakterien.
„Durch die Sequenzierung des Genoms von Uabimicrobium helgolandensis konnten wir zudem neue Hypothesen zum molekularen Mechanismus der Aufnahme von Beutebakterien aufstellen“, erläutert Jogler. Er sieht in den räuberischen Planctomyceten den mikrobiellen Archaeopteryx, einen Brückenorganismus, der zwischen den Pro- und Eukaryoten steht und ist überzeugt, dass die Planctomyceten eine Rolle in der Eukaryogenese gespielt haben, vielleicht sogar in der Entstehung des Lebens selbst.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Christian Jogler
Institut für Mikrobiologie der Friedrich-Schiller-Universität Jena
Neugasse 24
07743 Jena
Tel.: 03641 / 949301
E-Mail: christian.jogler@uni-jena.de
Originalpublikation:
Wurzbacher CE, Hammer J, Haufschild T, Wiegand S, Kallscheuer N, Jogler C. 0. “Candidatus Uabimicrobium helgolandensis”—a planctomycetal bacterium with phagocytosis-like prey cell engulfment, surface-dependent motility, and cell division. mBio 0:e02044-24. https://doi.org/10.1128/mbio.02044-24
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…