Bakteriengift macht Algen blind

Grünalgen verlieren fast vollständig die Farbe, wenn ihnen die tödlichen Bakterien zugesetzt wurden.
Foto: Jens Meyer / Uni Jena

Forschende der Universität Jena entdeckten ein Bakteriengift, das die Farb­pigmente im Augenfleck der einzelligen Grünalgen Chlamydomonas reinhardtii zerstört. Zu­sam­men mit einer weiteren giftigen Substanz machen die Bak­terien der Art Pseudomonas protegens die Grünalgen damit nicht nur orien­tierungs- und bewegungslos, sondern schicken sie in den sicheren Tod. Dem Gift mit Namen „Protegencin“ kam das Forschungsteam mit Hilfe der Raman-Spekt­roskopie und der Naturstoffforschung auf die Spur. Ihre Studienergebnisse ver­öffentlichen die Forschenden in der aktuellen Ausgabe des Fachmagazins „PNAS“ (DOI: https://doi.org/10.1073/pnas.2107695118).

Dass den Grünalgen Chlamydomonas reinhardtii eine Begegnung mit den Bakte­rien Pseudo­monas protegens nicht gut bekommt, wussten die Forschenden um Prof. Dr. Maria Mittag von der Universität Jena bereits aus früheren Studien. Jetzt konnten die Professorin für All­gemeine Botanik und Doktorandin Vivien Hotter gemeinsam mit den Teams um Prof. Dr. Jürgen Popp (Institut für Physikalische Chemie der Universität Jena und Leibniz-Institut für Photonische Technologien) und Prof. Dr. Christian Hertweck (Institut für Mikrobiologie der Universität Jena und Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut) sowie mit Prof. Dr. Severin Sasso (Universität Leipzig) das todbringende Gift identifizieren.

„Die Grünalgen besitzen ein primitives Auge, den sogenannten Augenfleck, mit dem sie Licht wahr­neh­men und sich orientieren können“, erläutert Maria Mittag. Dieser ermöglicht es den rund zehn Mikrometer kleinen Einzellern, sich aktiv zum Licht zu bewegen, um optimale Be­din­gungen für die Fotosynthese zu haben. Der Augenfleck enthält zwei Schichten von gelbli­chen carotinoidreichen Fett-Tröpfchen. „Die Carotinoide lassen sich mit Hilfe der Raman-Spekt­roskopie gut untersuchen“, so Prof. Mittag weiter. Dieses Verfahren analysiert die Streuung von Laser-Licht an Molekülen und liefert ein charakteristisches Spektrum, vergleich­bar einem spektroskopischen „Fingerabdruck“.

Chemische „Fingerabdrücke“ überführen die „Tatwaffe“

Mit diesem Instrument haben sich die Forscherinnen gemeinsam mit dem Team um Prof. Popp an ihre Detektiv-Arbeit gemacht und die charakteristischen „Raman-Fingerabdrücke“ aus Algenkulturen analysiert, denen Pseudomonas-Bakterien zugesetzt worden waren. „Den Ef­fekt kann man bereits mit bloßem Auge sehen“, berichtet Vivien Hotter. Die grüne Algenkultur verliert über Nacht fast vollständig ihre Farbe. „Parallel dazu verringert sich das Raman-Sig­nal für die Augenfleck-Carotinoide.“ Daraus lasse sich schließen, dass die Algen ihre Fähig­keit, sich im Licht zu orientieren, verlieren, sagt Vivien Hotter. Doch nicht nur das. „Wir konn­ten auch zeigen, dass das Gift ihre Zellmembran auflöst. Das überleben die Algen nicht.“

Auf die Spur der „Tatwaffe“, mit der es den Bakterien gelingt, die Algen zur Strecke zu bringen, kamen die Forscherinnen in Kooperation mit ihren Kolleginnen und Kollegen im Sonderfor­schungs­bereich (SFB) „ChemBioSys“. Wie die Analyse der Raman-Spektren ergab, verringert sich im Laufe der Bakterienattacke nicht nur das Signal für die Augenfleck-Pigmente: Es taucht zusätzlich ein neues Signal im Spektrum auf, das zuvor nicht vorhanden war. Dessen „Fingerabdruck“ nutzten die Naturstoff-Forscher um Prof. Hertweck, um die chemische Grund­struktur des Bakteriengiftes zu entschlüsseln und konnten schließlich zusammen mit den an­deren Forschenden die Substanz „Protegencin“ als Todesursache ermitteln.

Mit ihrer Grundlagenforschung suchen die Wissenschaftlerinnen und Wissen­schaft­ler im SFB „ChemBioSys“ nach Naturstoffen, welche die Interaktion zwischen Biosystemen wie Mikro­al­gen und Bakterien beeinflussen. Sie möchten hierbei die zugrundeliegenden Kontrollmecha­nismen aufklären. Obwohl Mikroalgen ganz wesentlich zur weltweiten Sauerstoffproduktion beitragen und zusammen mit den Cyanobakterien rund 50 Prozent das Treib­hausgas Koh­len­dioxid fixieren, sind die fundamentalen Kontrollmecha­nismen in den komplexen Biosystemen von Algen und Bakterien noch nicht hinreichend gut verstanden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Maria Mittag, Vivien Hotter
Matthias-Schleiden-Institut, Bereich Allgemeine Botanik der Friedrich-Schiller-Universität Jena
Am Planetarium 1, 07743 Jena
Tel.: 03641 / 949201, 949219
E-Mail: m.mittag[at]uni-jena.de, vivien.hotter[at]uni-jena.de

Originalpublikation:

Hotter V. et al. A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proceedings of the National Academy of Sciences (PNAS) 2021, https://doi.org/10.1073/pnas.2107695118.

http://www.uni-jena.de/

Media Contact

Dr. Ute Schönfelder Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…