Krebswirkstoff aus der Natur
Wenn Buschbohnen krankhaft-braune Flecken bekommen, stecken Pseudomonas-Bakterien dahinter. Bei ihrem Angriff auf die Pflanze sondern die schädlichen Mikroben einen Stoff ab, der die Abwehr der Pflanze durcheinander bringt – und sich in Zukunft als segensreich für den Menschen erweisen könnte.
Denn die Substanz hemmt auch das Wachstum von Krebszellen. Ein Team von Forschern, dem auch Wissenschaftler der Technischen Universität München (TUM) angehören, hat jetzt die Struktur und den neuartigen Wirkmechanismus des Bakterienstoffs aufgeklärt. (Veröffentlichung in Nature 452, 755-758; 10. April 2008)
Bakterien haben es nicht leicht, Pflanzen zu befallen, denn deren wächserne Oberfläche und Zellwände stellen für die Mikroben schwer zu überwindende Hürden dar. Gelingt der Durchbruch trotzdem, beginnt die Pflanze in vielen Fällen, sich aktiv zu wehren: Sie produziert ein ganzes Arsenal spezieller Eiweiße, die die biochemische Abwehr gegen das Pathogen in Gang setzen. Damit diese Abwehr funktioniert, müssen Proteine, die die Abwehr unterdrücken, abgebaut werden. Dies übernehmen die zellulären Entsorgungsstationen, die so genannten Proteasomen. Sie zerlegen zum Abbau bestimmte Eiweiße wieder in ihre Bausteine.
Doch die biochemischen Verteidigungslinien der Pflanzen sind nicht unüberwindbar: Bakterien der Art Pseudomonas syringae pathovar syringae – kurz Pss – sondern einen kleinen, aber höchst effektiven Eiweißring namens Syringolin A ab. Der stiftet in den Blattzellen der unfreiwilligen Pss-Wirtin, der Buschbohne, Verwirrung und führt so den Angriff der Pss-Bakterien zum Erfolg.
Was dieser Eiweißring in den Blättern der Buschbohne genau bewirkt, haben Wissenschaftler der TUM zusammen mit Kooperationspartnern der Max-Planck-Institute in Martinsried und Dortmund sowie Kollegen aus der Schweiz, Großbritannien und den USA herausgefunden: Syringolin A blockiert in den Blättern die Proteasomen der Buschbohne, indem es sich in einer ungewöhnlich festen chemischen Bindung an sie kettet. Das führt zu einem wahren Proteinstau in den Buschbohnenblättern, und in der Folge gerät die pflanzliche Abwehr dadurch aus den Fugen.
Außerdem klärten die Forscher die Struktur des Syringolins auf – und kamen so auf die Spur einer ganzen Eiweißfamilie: Sie fanden eine Reihe ähnlicher Verbindungen in anderen Mikroorganismen, die ähnlich wie Syringolin A funktionieren.
Diese Erkenntnisse sind nicht nur bedeutsam, um etwa Schutzmittel für die Buschbohne zu entwickeln. Syringolin A & Co. könnten sich in Zukunft auch für die Krebsbekämpfung eignen. Denn auch menschliche Tumorzellen produzieren sehr viele Proteine und sind daher von gut funktionierenden Proteasomen abhängig. Ein synthetischer Proteasom-Hemmstoff ist bereits seit einigen Jahren als Therapeutikum erhältlich. Möglicherweise könnte er Unterstützung durch den Naturstoff Syringolin A erhalten, der in ersten Experimenten mit kultivierten Krebszellen bereits wachstumshemmende Wirkung zeigte.
Der Biochemiker Groll sieht sogar noch weiteres Potenzial in Syringolin A & Co: Fänden sich geeignete Vertreter ihrer Klasse, wäre deren Einsatz auch gegen bakterielle Krankheitserreger denkbar, die Mensch oder Pflanze plagen. Die Grundlage für die Entdeckung und Erforschung dieser neuartigen Naturstoffe ist jedenfalls gelegt.
Kontakt:
Professor Dr. Michael Groll
Department Chemie
Technische Universität München
Lichtenbergstrasse 4
85747 Garching
Tel.: +49 89 289 13361
Fax.: +49 89 289 13363
Email: michael.groll@ch.tum.de
Media Contact
Weitere Informationen:
http://www.tum.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…