Filigrane Leichtbauwerke nach dem Vorbild von Kieselalgen

Bionik ist ein spannendes Gebiet: Fach übergreifend versuchen Wissenschaftler und Wissenschaftlerinnen von der Natur nützliche Mechanismen abzuschauen. So war etwa das Lotusblatt Vorbild für Fassadenfarbe, von der Dreck durch Regenwasser, wie Schlamm beim Lotusblatt, einfach abgewaschen wird.

Völlig neue Wege müssen die Forscher und Forscherinnen gehen, wenn ihr Interesse mit dem menschlichen Auge nicht sichtbaren Objekten gilt. Im Juni ist am Alfred-Wegener-Institut (AWI) für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft das virtuelle Helmholtz-Institut PlanktonTech gegründet worden, an dem das Fachgebiet Bionik und Evolutionstechnik der TU Berlin beteiligt ist.

PlanktonTech ist bis in das Jahr 2011 finanziert und die Forscher und Forscherinnen werden zunächst Grundlagenforschung an Diatomeen (Kieselalgen) betreiben. Langfristig können ihre Erkenntnisse dabei helfen, neue Baustoffe und Prinzipien für den Leichtbau zu entwickeln oder leichtere Autos zu bauen.

Diatomeen sind der Hauptbestandteil des Meeresphytoplanktons. Charakteristisch für die meist einzelligen Algen ist ihr Außenskelett aus Siliziumoxyd, das wie zwei Schalen einer Petrischale zusammengefügt ist. Diese Schalen sind von Poren und größeren Öffnungen durchbrochen, es gibt auch kreisrunde Arten mit Schwebefortsätzen oder verstärkten Strahlen – ähnlich den Speichen einer Felge.

Unter dem Rasterelektronenmikroskop offenbaren sich die symmetrische Vollkommenheit der Kieselalgen und ihre perfekte, ökonomische Konstruktion. „Leider weiß man noch wenig über die Biomechanik der Diatomeen“, sagt Dipl.-Math. Iván Santibáñez-Koref vom Fachgebiet Bionik und Evolutionstechnik der TU Berlin. Die Winzigkeit der Organismen macht es den Wissenschaftlern und Wissenschaftlerinnen schwer, sie über längere Zeit zu beobachten. „Die Biologen vom Alfred-Wegener-Institut haben sich größere Arten ausgesucht“, sagt Santibáñez-Koref.

Coscindiscus wailesi misst immerhin etwa 0,3 Millimeter. Die Aufgabe des TU-Bionikers in dem Projekt besteht darin, mit der vom Leiter seines Fachgebietes, Prof. Dr.-Ing. Ingo Rechenberg, etablierten Methode der Evolutionsstrategie, Möglichkeiten zur Nutzung des Bauplanes der Diatomeen für die Lösung technischer Aufgabenstellungen zu untersuchen. „Langfristig arbeiten wir an einem Werkzeug für die Auslegung von Leichtbaukronstruktionen“, sagt der Bioniker. Durch die Analyse der Biomechanik der Diatomeen, können auch Biologen die Stellung der Diatomeen in marinen Ökosystemen besser verstehen.

Im Prinzip überträgt die Evolutionsstrategie aus der Biologie bekannte Mechanismen (Selektion, Variation und Replikation) in mathematische Formeln und nutzt diese für die Optimierung komplexer Systeme. „Man geht davon aus, dass sich Organismen, die die knappen Ressourcen bestmöglich ausnutzten in der Natur durchsetzen“, erläutert Santibáñez-Koref. Sind diese Prinzipien einmal im Rechner erfasst, können am Computer Variablen des zu untersuchenden Systems verändert werden – abhängig von den verschiedenen Qualitätsansprüchen der Nutzer und Nutzerinnen.

„Auf diese Art haben wir bereits einen Schiffspropeller optimiert“, nennt er ein Beispiel. Die Entwicklung des neuartigen Propellers hätte Jahre länger gedauert, wenn die Bioniker und Bionikerinnen alle möglichen Varianten der Propellerflügelform als Modell bauen und einzeln im Wasser hätten testen müssen. Dieses Propellerkonzept war so neu, dass keine Erfahrungen zur Auslegung vorlagen. Das heißt, die Forscher und Forscherinnen konnten die Evolutionsstrategie für die Auslegung einsetzen, da bei deren Einsatz sehr wenig Vorwissen für die Lösung des Problems benötigt wird.

Ähnlich will Santibáñez-Koref nun mit den Kieselalgen verfahren. „Wir erhalten vom AWI, das über eine riesige Sammlung Diatomeen besitzt, 3-D-Modelle des Planktons, die als Ausgangsstruktur für die Optimierung dienen“, erläutert der wissenschaftliche Mitarbeiter. Im Anschluss käme dann, zur Anpassung an den Anwendungsfall, die Evolutionsstrategie zum Einsatz. Am Ende des Projektes steht eine automatisierte Anwendung, die auf der Basis der Baupläne verschiedener Kieselalgen die neuartige Konstruktion von Bauteilen wie Radfelgen oder für ein leichtes, aber tragfähiges Gerüst einer Eislaufhalle liefern kann.

Mit der Anwendung der an der TU Berlin gewonnenen Erkenntnisse werden sich dann andere Partner des virtuellen Institutes PlanktonTech befassen, etwa das AWI, das Institut für Textil- und Verfahrenstechnik Denkendorf oder das Leichtbauinstitut Jena.

Weitere Informationen erteilt Ihnen gern:
Iván Santibáñez-Koref, Technische Universität Berlin,
Fachgebiet Bionik und Evolutionstechnik,
Ackerstrasse 71-76, 13355 Berlin,
Tel.: 030/314-72663, Fax: 030/314-72019,
E-Mail: isk@bionik.tu-berlin.de.
Weitere Informationen:
http://www.tu-berlin.de/?id=38148
http://www.bionik.tu-berlin.de
http://www.pressestelle.tu-berlin.de/medieninformationen
http://“EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
http://Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Media Contact

Dr. Kristina R. Zerges idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…