Der Proteinfaltung auf der Spur
Falsch gefaltete Proteine sind für Krankheiten wie BSE oder Alzheimer verantwortlich / Frankfurter Forscher induzieren Faltungsprozesse thermisch, um sie analysieren zu können
FRANKFURT. Eine Reihe von Krankheiten, die derzeit in der Diskussion stehen, sind auf Fehlfunktionen nicht korrekt gefalteter Proteine zurückzuführen. Dazu gehören zahlreiche Muskelkrankheiten, aber auch Alzheimer, die Creutzfeld-Jakob-Krankheit, Scrapie und BSE. Die Ursachen sind weitgehend unbekannt; man weiß jedoch, dass fehlgefaltete Proteine (Prionen) unter anderem pathologisch wirken, indem sie zusammenklumpen (aggregieren) und nicht mehr abgebaut werden können. Die Forschungsgruppen von Prof. Josef Wachtveitl und Prof. Werner Mäntele untersuchen derzeit die Mechanismen der Proteinfaltung. Mit Hilfe spektroskopischer Methoden versuchen sie, die Prozesse der Strukturbildung – den Übergang vom ungeordneten Aminosäure-Knäuel zu einer geordneten Struktur – zu charakterisieren und zu entschlüsseln. Damit leisten die Wissenschaftler einen Beitrag zum Verständnis der komplexen Mechanismen, die zu einem pathogenen Protein führen. In beiden Gruppen werden Modellsysteme und kleine Proteine untersucht, um die Leistungsfähigkeit neuer Methoden auszuloten und zu verbessern. Die bisherigen Ergebnisse sind vielversprechend: Strukturmerkmale an Proteinen können identifiziert und Strukturumwandlungen zeitlich verfolgt werden.
Denn der Ablauf grundlegender Prozesse der Proteinfaltung ist bisher wenig bekannt. Die meisten Proteine falten korrekt in der erstaunlich kurzen Zeit im Bereich von einer milliardstel (10-9 ) Sekunde bis zu Sekunden. Daher nimmt man an, dass die Energielandschaft, die Faltungswege und Geschwindigkeit bestimmt, relativ übersichtlich ist und ein klares Optimum hat, das vom Protein „intuitiv gefunden“ wird. Passiert dies nicht, ist ein derartiges Protein in seiner Funktion gestört, wenn nicht ganz unbrauchbar. Die Strukturbildung ist mit der Entstehen einer Siedlung vergleichbar: relativ schnell stehen die ersten Häuser, die sich allmählich zu Stadtteilen entwickeln und schließlich die ganze Stadt bilden.
Die korrekte Strukturbildung ist die Voraussetzung dafür, dass die Proteine ihre Funktionen fehlerfrei erfüllen können: Nach ihrer Bildung aus einzelnen Aminosäuren müssen sie sich in eine präzise dreidimensionale Struktur falten. Der Übergang von einer ungeordneten Kette von Aminosäuren in eine – und nur eine ganz spezifische der zahllosen Möglichkeiten, eine räumliche Anordnung einzunehmen, wird von der energetischen Situation bestimmt.
Die Gruppe um Prof. Josef Wachtveitl vom Institut für Physikalische und Theoretische Chemie setzt kurzzeit- spektroskopische Methoden ein, um primäre Prozesse der Strukturbildung bei Proteinen zu untersuchen. Sie laufen in der unvorstellbar kurzen Zeit von 10-12 bis 10-9 – einer billionstel bis einer milliardstel Sekunde – ab. Unter Einsatz neuartiger optischer Schalter können mit einem ultrakurzen Laserblitz Strukturmotive ineinander umgewandelt werden; diese Strukturbildung wird mit Laserlicht charakterisiert.
Prof. Werner Mäntele und Dr. Christian Zscherp vom Institut für Biophysik arbeiten mit Temperaturänderungen, um die Faltungsprozesse zu untersuchen. Mit infrarotem Messlicht wird die Bildung der Strukturmotive wie einer Helix oder eines Faltblattes verfolgt. Um die Entfaltung und Rückfaltung von Proteinen auch zeitlich auflösen zu können, wurde am Institut für Biophysik im Rahmen einer Physik-Diplomarbeit ein neuer Ansatz erfolgreich erprobt. Tatiana Nazarova baute eine Apparatur auf, die es ermöglicht, die Temperatur von Proteinproben mit einem Infrarot-Laserblitz in wenigen milliardstel Sekunden um bis zu 20° zu erhöhen. Durch diesen laserinduzierten Temperatursprung kann die Entfaltung des Proteins sehr schnell gestartet werden. Mit abstimmbaren Infrarot-Halbleiterlasern wird dann die Dynamik der Entfaltung und der Rückfaltung verfolgt.
Kontakt: Prof. Dr. Josef Wachtveitl, Inst. für Physikalische und Theoretische Chemie; Tel.: 069/798-29351; E-Mail: wveitl@theochem.uni-frankfurt.de; Prof. Dr. Werner Mäntele, Inst. für Biophysik; Tel.: 069/6301 5835; E-Mail: maentele@biophysik.uni-frankfurt.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…