Das Puzzle der Proteinfaltung

Galt die Erforschung der Faltung von Proteinen noch vor Jahren als hochinteressante, aber eher akademische Fragestellung, hat diese Forschungsrichtung inzwischen auch ein medizinisches Gewicht bekommen. Das hat verschiedene Gründe. So konnte die Forschung zum einen zeigen, dass fehlerhaft gefaltete Proteine schwere Erkrankungen auslösen, weil die zusammengeklumpten Eiweiße nicht mehr abgebaut werden können. Dazu zählen etwa Alzheimer, Creutzfeldt-Jacob, Rinderwahn (BSE), die Traberkrankheit Scrapie bei Schafen sowie einige Muskelerkrankungen. Zum anderen spielt die effiziente und korrekte Faltung von Proteinen bei der gentechnischen Produktion zum Beispiel von Medikamenten eine wichtige Rolle. Darauf hat Prof. Thomas Kiefhaber vom Biozentrum der Universität Basel (Schweiz) auf einem wissenschaftlichen Symposium im Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch am Mittwoch, den 5. Februar 2003, anlässlich des 65. Geburtstags des Proteinforschers Prof. Gregor Damaschun (MDC) hingewiesen. Prof. Damaschun gilt auf diesem Gebiet als einer der international renommiertesten Proteinforscher. Zugleich stellte Prof. Kiefhaber neue biophysikalische Techniken vor, die es ermöglichen, die elementaren Prozesse der Proteinfaltung zu verfolgen, die innerhalb von millionstel bis milliardstel von Sekunden ablaufen.

Proteine sind die Baustoffe und Maschinen des Lebens. Es gibt keinen Prozess im Organismus, der ohne sie von statten gehen kann. Angefangen von der Zellteilung bis zur Verdauung der Nahrung bis hin zum Sauerstofftransport im Blut. So vielfältig ihre Aufgaben, so vielfältig ist auch ihr Aussehen. Es gibt sie in verschiedenen Formen und Größen. Der Bauplan der Proteine ist in den Genen enthalten. In den Proteinfabriken der Zelle, den Ribosomen, werden die Bausteine der Proteine, die Aminosäuren, wie Glieder einer Kette aneinandergereiht. Das sind im Schnitt mehrere hundert Bausteine. Um aktiv sein zu können, müssen die Proteine in eine ganz bestimmte dreidimensionale Struktur gefaltet werden. Diese Struktur ist für ihre Funktion im Organismus entscheidend.

Geschwindigkeitsbegrenzung für Proteinfaltung
Proteine finden ihre gefaltete Struktur normalerweise von selbst. Das bedeutet, dass die Information für die räumliche Struktur in der Abfolge der Aminosären festgelegt ist. Helferproteine, so genannte Chaperone, unterstützen außerdem den Prozess in der Zelle. Das Verständnis der Vorgänge, die bei der normalen Faltung eines Proteins ablaufen, ist ein aktuelles Problem in der Biochemie und Biophysik, aber auch essentiell für die Untersuchung von Faltungskrankheiten. „Die frühesten Faltungsprozesse der Proteine laufen in Zeitbereichen von millionstel bis millardstel von Sekunden ab“, sagte Prof. Kiefhaber. „Die Geschwindigkeitsbegrenzung für die Proteinfaltung liegt bei ungefähr zehn Milliardstel Sekunden (10-8 s)“, erläuterte er. Die meisten Proteine finden ihre biologisch aktive Struktur innerhalb von Millisekunden bis Minuten, aber selbst kleine Änderungen in der Aminosäuresequenz, zum Beispiel durch Mutationen, können zu großen Änderungen in den Faltungsgeschwindigkeiten sowie zu fehlerhafter Faltung führen.

„Mit Hilfe spezieller Untersuchungstechniken wie zum Beispiel der Kernspinresonanz-Spektroskopie (NMR-Spektroskopie) und der Messung von zeitabhängigen Änderungen verschiedener anderer spektroskopischer Signale versuchen Wissenschaftler, das Puzzle der Proteinfaltung zu lösen“, sagte Prof. Kiefhaber. Ziel der Untersuchungen des in Basel arbeitenden deutschen Forschers ist es, auf molekularer und atomarer Ebene zu verstehen, welche Zwischenstufen bei der Proteinfaltung durchlaufen werden und welche Regionen der Proteinkette für den Faltungsprozess besonders wichtig sind. Diese Ergebnisse sollen dazu beitragen, dass die Faltung von Proteinen vorhergesagt werden kann und die Ursachen von Faltungskrankheiten im molekularen Detail verstanden werden.

Weitere Informationen erhalten Sie von der
Pressestelle des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str.10
13125 Berlin
Tel.: +49/30/9406-38 96
Fax.:+49/30/9406-38 33
E-Mail: presse@mdc-berlin.de

Media Contact

Barbara Bachtler idw

Weitere Informationen:

http://www.mdc-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…