Mathematische Modelle für biologische Prozesse
Die Mathematik gehört zu Astronomie, Chemie, Physik, Statistik und Ökonomie wie das Fundament zum Haus. Mit der „Mathematischen Biologie“ öffnet sich beiden Disziplinen ein neues Feld. Auf dem treffen auch das Leipziger Max-Planck-Institut für Mathematik in den Naturwissenschaften und die Universität Leipzig zusammen.
Die Mathematik als Mutter der Naturwissenschaften dient als Querschnittsdisziplin. Für unterschiedlichste Fragen nutzt sie oft ähnliche Methoden. Am Leipziger Max-Planck-Institut für Mathematik in den Naturwissenschaften lässt sie etwa für die Materialwissenschaften Gedächtnismetalle springen, erlaubt der Neurologie den Blick ins Gehirn, bringt für die Informatik Computer auf Trab. Und seit einiger Zeit streckt sie ihre Fühler Richtung Biologie aus. „Die Vielseitigkeit ist das Geheimnis der Mathematik“, sagt Professor Eberhard Zeidler, einer der vier Direktoren des Institutes. „Am Ende geht es darum, für Fragen der Naturwissenschaften Antworten zu finden und ihre Modelle zu prüfen.“ Zugleich sieht Zeidler die Crux, die für Außenstehende in der Abstraktion liegt. Doch genau die erlaubt es der Mathematik, in Bereiche vorzudringen, „die weit entfernt sind vom Alltag und seinen Erfahrungen“. In die Weiten des Kosmos. In die Welt der Elementarteilchen.
Oder in die Welt der Einzeller. So zählen Amöben zu jenen Organismen, in die die Biologie am tiefsten eingedrungen sind – der Mathematik stehen sie nun bei, um perspektivisch der Organisation von Zellen und Zellverbänden auf die Spur zu kommen. Von der Amöbe Dictyostelium discoideum beispielsweise ist bekannt, dass sie auf den Entzug von Nahrung mit einer beachtlichen sozialen Leistung reagiert: Statt einzeln zu verhungern, bilden sie gemeinsam eine Struktur, die für zehn Prozent der Population die Existenz sichert. Wie die Amöben ihr Überleben organisieren, ist eine Frage, die sich quasi im Selbstlauf vermehrt: Wie kommunizieren die Zellen? Welchen Signalen und welchen Mustern folgen sie? Wie sieht ihr genetischer Bauplan aus? Fragen über Fragen, an denen Dr. Angela Stevens „nur“ eins interessiert: jene mathematischen Modelle, mit denen sich biologische Prozesse beschreiben lassen. Sie arbeitet an einer Entwicklung, die an Aufmerksamkeit gewinnt. So äußerte Professor Manfred Eigen, Nobelpreisträger für Chemie (1967), die Auffassung: Die Biologie muss sich „mathematisieren“, damit sich das Wesentliche aus der Fülle an Einzelheiten und Daten filtern lässt. Prof. Eigen selbst gehört zu jenen Chemikern und Physikern, deren Experimente in die Grenzbereiche zur Biologie vorgestoßen sind.
Dr. Angela Stevens nun ist Mathematikerin am Leipziger Max-Planck-Institut für Mathematik in den Naturwissenschaften. Die 40-Jährige gehört zu den ersten ihres Fachs, die an der Schnittstelle „Mathematische Biologie“ operieren. Wenn sie als Leiterin der gleichnamigen Forschungsgruppe über ihr Metier spricht, dann überlegt sie ihre Worte. Sie möchte verstehen, „wie Zellen funktionieren“. Und erklärt: „Es wird ein weiter Weg. Wir wissen nicht einmal, was eine einzelne Zelle für ein biophysikalischer oder biomechanischer Körper ist – wenn ich sie überhaupt so betrachten will.“ Letztlich streben die Wissenschaftlerin und ihre Mitstreiter danach, die Prinzipien biologischer Zusammenhänge zu fassen. Gerade so, wie es Mathematik und Physik gelungen ist, mittels der Fallgesetze den Fall jeglicher Körper zu beschreiben – ungeachtet dessen, dass nicht einer dem anderen gleicht. Eben so könnten mathematische Methoden bis zur Embryonalentwicklung, zum Tumorwachstum oder zur Wundheilung vordringen.
Bei derartigen Themen sucht das MPI die Nähe zum Interdisziplinären Zentrum für Bioinformatik (IZBI), zu dessen Initiatoren mit Prof. Jürgen Jost, Dr. Angela Stevens sowie Dr. Dirk Drasdo auch drei Mathe-Planckianer gehören. Die Einrichtung, die seit Juni 2002 an der Universität Leipzig besteht, liegt einen Steinwurf vom Planck-Haus entfernt. Informatiker, Biologen, Chemiker und Physiker bilden Arbeitsgruppen, die derzeit fünf Projekte betreiben. Gleich ob es um Datenintegration für die Aufgaben der Bioinformatik, um zelluläre Signaltransduktion und Genexpression, um genetische Evolution oder um komplexe Systeme und biologische Netzwerke geht, faktisch ist die Mathematik immer mit im Boot – auch wenn das benachbarte MPI „lediglich“ beim Thema „Selbstorganisation von Geweben“ als institutioneller Vertreter für die Mathematik in den Naturwissenschaften antritt.
Das gemeinsame Ziel heißt: Mittels moderner Verfahren der Bildgebung sowie theoretischer Modelle ausgewählte Gewebe auf ihre Organisation hin zu analysieren. Ehe jedoch die Ergebnisse in eine klinische Anwendung einfließen können, gilt es zum einen die Grundmuster innerhalb der Gewebe zu verstehen und zum anderen die Quantifizierung der morphometrischen Strukturen voranzutreiben. An der Tafel von Angela Stevens ist einer der Momente, die IZBI und MPI dorthin führen könnten, skizziert. Eine gewölbte Kreidelinie umreißt das Wachstum von Zellen im Darm, weist auf eine typische Ausstülpung hin, die sich im steten Rhythmus von zwei Tagen erneuert. Was diesen Vorgang – im Falle einer Krebserkrankung – stabilisiert und was ihn destabilisiert, ist keine Frage der Medizin oder Biologie allein. Genetik und Mikroskopie liefern hinlänglich Material und Verfahren, auch für mathematische Hypothesen und Modelle. Es ist ein erster Schritt auf dem weiten Weg: heute zu verstehen, wie einzellige Amöben ihr Überleben als Population organisieren, und künftig die Komplexität von Zellen höherer Organismen zu entschlüsseln. Möglicherweise. Die Mathematik jedenfalls kann als Wegweiser fungieren – kann die Stimmigkeit oder Unstimmigkeit biologischer Hypothesen aufdecken.
Daneben versucht Dr. Angela Stevens den Kontakt zu Prof. Josef Käs, einem der beiden Wolfgang-Paul-Preisträger an der Universität Leipzig, dauerhaft aufzubauen. Mit Prof. Käs forscht und lehrt ein weltweit anerkannter Wissenschaftler an der Schnittstelle zwischen Biologie und Physik. Seine Studien zum Zytoskelett der Zelle und aktuell zur Vernetzung von Nerven im Reagenzglas bieten sich womöglich für mathematische Analysen an. Noch allerdings steckt die Verbindung in den Kinderschuhen. Aber die Absicht von Dr. Stevens wird deutlich: Biologische Probleme suchen, die offen sind für die mathematische Abstraktion. Schließlich bringen die Universität und das MPI für Mathematik in den Naturwissenschaften ihre Ressourcen in eine Fülle gemeinsamer Veranstaltungen ein. Oberseminare, Arbeitsgemeinschaften und Kolloquien. Und nicht zuletzt hat die Universität einen ihrer Hoffnungsträger im Bereich Biowissenschaften und Informatik dem MPI zu „verdanken“. Prof. Jürgen Jost, einer von drei Leibniz-Preisträgern im Direktoren-Quartett des Instituts, nahm in den USA den Faden zu Prof. Peter F. Stadler auf. Seit September 2002 hat der Chemiker den neu gegründeten Lehrstuhl für Bioinformatik inne und gehört zum Vorstand des Interdisziplinären Zentrums für Bioinformatik. Es war und ist eine naheliegende Beziehung: Prof. Stadler untersucht unter anderem die Theorie komplexer Systeme und die mathematischen Grundlagen der Evolutionstheorie. Prof. Josts Berechnungen und Simulationen führen zum Beispiel zu einem grundlegenderen Verständnis der Topologie von Nervennetzen.
Folglich steckt das nächste Vorhaben von Universität und Max-Planck-Institut bereits in den Startlöchern. Mit den Mathematikern und Physikern der Alma mater soll eine Research School entstehen. Die Idee ist es, die Graduiertenkollegs beider Seiten zusammenzuführen und auszubauen. „Vermutlich 2004 könnte es klappen“, blickt MPI-Direktor Prof. Zeidler in die Zukunft. Der Antrag jedenfalls wurde im vorigen Jahr eingereicht … Daniela Weber
Weitere Informationen:
Prof. Dr. Eberhard Zeidler
Telefon: 0341 – 9959616
E-Mail: ezeidler@mis.mpg.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…