Proteindefekt macht Mäuse blind
Max-Planck-Forscher entdecken ein für den Sehprozess essenzielles Protein an der Synapse der Photorezeptor-Zelle
Lichtsinneszellen bzw. Photorezeptoren wandeln Lichtquanten in neuronale Signale um. Diese werden über die Freisetzung des chemischen Botenstoffes Glutamat an ihren Synapsen auf nachgeschaltete Nervenzellen übertragen. Forscher vom Max-Planck-Institut für Hirnforschung in Frankfurt/Main haben jetzt gemeinsam mit Kollegen vom Leibniz-Institut für Neurobiologie (Magdeburg) und der Universität Oldenburg mit „Bassoon“ ein Protein gefunden, dem bei der Bildung und Funktion der Synapsen in Lichtsinneszellen der Netzhaut eine zentrale Rolle zukommt. Die Funktion dieses Schlüsselproteins konnten die Forscher bei der Untersuchung genetisch veränderter Mäuse aufklären, die dieses Protein nicht mehr herstellen können: Ohne „Bassoon“ waren die Synapsen ihrer Photorezeptoren so schwer geschädigt, dass die Mäuse nahezu blind wurden (Neuron 06. März 2003).
Der Sehsinn ist der wichtigste Sinn beim Menschen. Die Netzhaut bzw. Retina ist der lichtaufnehmende, sensorische Teil unseres Auges, und die Synapsen der Photorezeptoren sind die erste Schaltstelle in der Übertragung von Lichtsignalen in der Retina. Die Entschlüsselung des molekularen Aufbaus und der Funktion der Photorezeptor-Synapsen ist Ziel der Arbeitsgruppe von Johann Helmut Brandstätter, Heisenberg-Stipendiat in der Abteilung Neuroanatomie am Max-Planck-Institut für Hirnforschung in Frankfurt am Main. Synapsen sind Kontaktstellen zwischen einer Signal-übertragenden (Präsynapse) und einer Signal-empfangenden Nervenzelle (Postsynapse). Sie sind die molekularen Schalteinheiten der Informationsverarbeitung an den Milliarden von Nervenzellen im menschlichen Gehirn. Veränderungen an Synapsen spielen bei Prozessen im gesunden Gehirn – Lern- und Gedächtnisvorgänge – wie auch im kranken Gehirn – von Alzheimer bis Rinderwahn – eine zentrale Rolle.
Ein ungewöhnlich großes Zytomatrix-Protein in der Präsynapse ist „Bassoon“ (engl. Fagott), von man bereits vermutet hatte, dass es eine wichtige Rolle an der Synapse spielt. Nun zeigten die Neurowissenschaftler, dass „Bassoon“ ganz essenziell für die Verankerung des synaptischen Bandes des Photorezeptors an der aktiven Zone der Synapse ist. Das synaptische Band ist eine Elektronen-dichte Struktur innerhalb der Präsynapse, die sich von der aktiven Zone bis weit hinein in die synaptische Endigung erstreckt. Man vermutet, dass es wie ein Förderband für den kontinuierlichen Nachschub von Vesikeln zur Freisetzung des chemischen Botenstoffes Glutamat an der aktiven Zone sorgt. Fehlt „Bassoon“, wie in den mutanten Mäusen, werden die synaptischen Bänder nicht mehr an der präsynaptischen Membran verankert und schwimmen frei im Zytoplasma. Dann gelangen die mit dem Botenstoff Glutamat gefüllten Vesikel nicht mehr geordnet an die Synapse, folglich findet keine Signalübertragung von den präsynaptischen Photorezeptoren auf die postsynaptischen Nervenzellen statt – und die Mäuse werden nahezu blind.
Die Funktion der Retina wird durch Ableitung von so genannten Elektroretinogrammen bestimmt. Dabei handelt es sich um die Summe der elektrischen Potenziale aller Zellen als Antwort auf einen Lichtreiz. Die a-Welle repräsentiert die Antwort der Photorezeptoren, die b-Welle die der nachgeschalteten Nervenzellen – sie ist in mutanten Mäusen deutlich reduziert.
Die Photorezeptor-Synapse ist die komplexeste und leistungsfähigste chemische Synapse, die man im zentralen Nervensystem findet. Sie überträgt Lichtsignale, die in ihrer dynamischen Breite mehrere Zehnerpotenzen an Lichtintensitäten umfassen können, also von einer sternenklaren Nacht bis hin zu einem sonnenhellen Tag reichen. Fehlfunktionen an der Photorezeptor-Synapse haben fatale Folgen, die von der Beeinträchtigung der Sehleistung bis hin zur völligen Erblindung führen können.
„Unsere Untersuchung zeigt nicht nur, dass „Bassoon“ ein unverzichtbares Protein für den molekularen Aufbau der Photorezeptor-Synapse ist“, sagt Brandstätter. „Sie liefert auch erstmals einen direkten Beweis dafür, dass das präsynaptische Band an der Bereitstellung von Transmittervesikeln für die Signalübertragung beteiligt ist“. Nun gelte es zu klären, welche Zusammenhänge zwischen Defekten im „Bassoon“-Gen und Retina-Erkrankungen bestehen.
Media Contact
Weitere Informationen:
http://www.mpih-frankfurt.mpg.de/global/index.htmAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…