Synergien: Aus der Biologie in den Rechner und zurück
Mit jedem Augenschlag und jeder Bewegung verändert sich blitzschnell das Bild, das wir sehen. Eigentlich müsste uns dieses bewegte Netzhautbild schwindelig machen. Warum wir trotzdem ein stabiles Bild sehen, erklärt Prof. Dr. Christoph von der Malsburg (Institut für Neuroinformatik) anhand seines Modells des Objektsehens.
Im aktuellen Sonderheft NeuroRUBIN des Wissenschaftsmagazins RUBIN zeigt er, wie sich eine auf neuronale Prinzipien stützende Hypothese anhand eines Gesichtserkennungs-Systems quasi rechnerisch bestätigt und dabei die biologische Sichtweise erweitert.
Das „innere Auge“ sieht ein stabiles Bild
Das Objekterkennungsmodell „Dynamic Link Matching“ (DLM) gibt eine Erklärung dafür, warum unser „inneres Auge“ ein stabiles Bild sieht: Ein sog. Modellfenster, das dem „inneren Auge“ entspricht, konstruiert aus aktuellen Bilddaten (Bilddomäne) und gespeicherten Modelldaten (Modelldomäne) ein stabiles, von Augenbewegungen unbeeinflusstes Bild der Umwelt. Möglich ist das nur durch schnelle situationsabhängige Organisationsprozesse (dynamische Links), durch die zwischen den Domänen und dem Fenster Punkt-zu-Punkt-Verbindungen aufgebaut werden. Das Bild wird kontinuierlich in Position, Größe und Orientierung sowie Objektform, Pose und Beleuchtung angepasst.
Gesichtserkennungssystem bestätigt Modell
Diesen Prozess der Objekterkennung haben die Neuroinformatiker im Rechner realisiert und auf das Problem der Gesichtserkennung angewendet – mit großem Erfolg, was den Vergleich von statischen Bildern im Bild- und Modellbereich betrifft. Rechnerexperimente werden mit zunehmender Rechner-Kapazität mehr und mehr zum Gradmesser für realistische Konzepte. Im nächsten Schritt soll das System nun die Fähigkeit des natürlichen Sehsystems nachbilden und die Umwelt direkt visuell erfahren. Wenn das gelingt, wird das Gesichtserkennungssystem selbstständig aus Bildern lernen und aus vielen Tausenden von Einzelbildern ein genaues plastisches Modell des menschlichen Gesichts aufbauen. Die Forscher hoffen, dieses Ziel in ein bis zwei Jahren zu erreichen.
Standardmodell überdenken
Das Modell der dynamischen Links entspricht nicht dem gegenwärtigen neuronalen Standardmodell, das von starren Verbindungsmustern ausgeht, wonach sich Neuronen nicht situationsabhängig gruppieren können. Prof. Dr. von der Malsburg ist davon überzeugt, dass sich dynamische Links im Gehirn realisieren lassen: Zum Beispiel können Synapsen (Kontaktstellen zwischen den Nervenzellen) durch Signalkorrelation schnell und reversibel zwischen einem leitenden und einem nichtleitenden Zustand schalten. Da sich seine These experimentell überprüfen lässt, hofft er, dass sich die Kollegen aus der Neurobiologie bald des Themas annehmen werden.
Von Mensch bis Maus
Zehn weitere Themen aus Medizin, Naturwissenschaften und Neuroinformatik in NeuroRUBIN: „Der kleine Unterschied“ im menschlichen Gehirn; Wenn Gesichter bedeutungslos sind – Auf den Spuren einer seltenen Funktionsstörung des Gehirns; Von der Nase ins Gehirn – Wie Düfte Gestalt annehmen; Leistungssteigerung und Plastizität bis ins hohe Alter; Künstliche Bewegung, so natürlich wie möglich; Sehen und Bewegen: Ein Feuerwerk der Nervenzellen; Elektrische Synapsen: „Aschenputtel“ unter den Zellkontakten; Räume der Bewegung – Wo Nervenzellen entstehen, wachsen und sich verändern; Diagnose Veitstanz (Chorea Huntington) – Was kann da noch helfen?; Tierphysiologie: Mäuse stehen Modell für neurodegenerative Erkrankungen sowie sechs Forschungsprojekte aus der International Graduate School for Neuroscience (IGSN).
Weitere Informationen
Prof. Dr. Christoph von der Malsburg
Institut für Neuroinformatik der Ruhr-Universität
44780 Bochum
Tel.: 0234 – 32-27997
E-mail: Christoph.von.der.Malsburg@neuroinformatik.ruhr-uni-bochum.de
Media Contact
Weitere Informationen:
http://www.ruhr-uni-bochum.de/neurorubinAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…