Wie Prionen Nervenzellen infizieren – Immunzellen dienen als Vehikel

Die Creutzfeldt-Jacob-Krankheit (CJK) ist eine Infektionskrankheit, die von bestimmten Eiweissen, Prionen, ausgelöst wird. Im fortgeschrittenen Stadium zerstören die Erreger das Gehirn. Doch offenbar wird das Gehirn nicht in jedem Fall direkt infiziert. Prionen gelangen zumeist über die Peripherie – vermutlich über den Magen-Darm-Trakt – in den Körper und vermehren sich ausgerechnet in den Organen des Immunsystems: in den Lymphknoten, der Milz und in den Rachenmandeln. Fatalerweise hilft den Prionen auch ein weiterer Bestandteil der Immunabwehr, das Komplementsystem, sich in diesen lymphatischen Organen anzusiedeln, wie Prof. Adriano Aguzzi vom Universitätshospital Zürich/Schweiz vor einiger Zeit nachweisen konnte. Noch ist jedoch der Mechanismus, wie Prionen vom Immunsystem in das Nervensystem gelangen, unklar. Offenbar gelingt es Prionen, die sich in der Milz angesiedelt haben, über eine weitere Gruppe von Immunzellen, die so genannten follikulären dendritischen Zellen (FDCs), periphere Nervenzellen zu infizieren. Das haben jetzt Prof. Aguzzi, seine Mitarbeiter Dr. Marco Prinz und Dr. Mathias Heikenwalder in Zusammenarbeit mit Dr. Martin Lipp vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch im Tierversuch gezeigt. Die Arbeit hat die Fachzeitschrift Nature am 15. Oktober 2003 vorab online veröffentlicht (www.nature.com/nature| http://dx.doi.org/doi:10.1038/nature02072).

Während die Prionen innerhalb weniger Tage nach einer Infektion bei der Maus in die lymphatischen Organe gelangen und sich dort in den FDCs vermehren können, geraten sie über periphere Nervenzellen erst nach Monaten in das zentrale Nervensystem. Den Grund für diese stark verzögerte Neuroinvasion der Prionen sehen die Forscher in der räumlichen Trennung zwischen FDCs und Nervenzellen. Normalerweise bilden die follikulären dendritischen Zellen mit den B-Zellen in der Milz so genannte B-Zell-Follikel (B-Zonen) aus, die in einer gewissen Distanz zu den gut mit Nervenzellen versorgten Blutgefäßen liegen. Die Forscher konnten jetzt beobachten, dass sich die Prionen in Mäusen, bei denen ein bestimmtes Rezeptormolekül für einen Boten- oder Signalstoff des Immunssystems, der Chemokinrezeptor CXCR5, ausgeschaltet ist, mit einer verkürzten Latenzzeit im zentralen Nervensystem nachweisen lassen.

Chemokine steuern die Zirkulation von Immunzellen und sind auch für den räumlichen und funktionellen Aufbau der lymphatischen Organe notwendig. Fehlt CXRC5, hat die Milz der Tiere keine B-Zonen. In diesen Zonen der Milz werden normalerweise die B-Zellen für den Abwehrkampf fit gemacht. Fehlen die B-Zonen, lagern sich die follikulären dendritischen Zellen um die Zentralarterie der Milz an. Dort kommen sie in die Nähe von Nervenzellenendigungen. Je enger und häufiger der Kontakt, desto wahrscheinlicher ist eine Prioneninfektion der Nervenzellen, postulieren die Forscher. Je weiter die FDCs von den Nervenzellen räumlich getrennt sind, desto geringer ist offenbar eine effiziente Infektion.

Möglicherweise erklärt diese Erkenntnis auch, weshalb beim Menschen die Inkubationszeit – die Zeit von der Infektion bis zum Ausbruch der Erkrankung – etwa bei der sporadischen Creutzfeldt-Jakob-Krankheit, Jahrzehnte, bei der wahrscheinlich durch den BSE-Erreger ausgelösten neuen Variante der Erkrankung, nur wenige Jahre dauern kann. Ziel der Forscher ist es jetzt, Wege zu finden, den Erreger in der Peripherie in Schach zu halten und seine Ausbreitung durch das Immunsystem sowie das periphere Nervensystem in das Gehirn zu verhindern.

„The distance between follicular dendritic cells and nerves controls prion neuroinvasion“
Marco Prinz1* , Mathias Heikenwalder1*, Tobias Junt2, Petra Schwarz1, Markus Glatzel1, Frank L. Heppner1, Yang-Xin Fu3, Martin Lipp4 & Adriano Aguzzi1
1Institute of Neuropathology, and 2Institute of Experimental Immunology,University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland
3Department of Pathology and Committee on Immunology, The University of Chicago, 5841 S. Maryland, Chicago, Illinois 60637, USA
4Department of Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10,
13092 Berlin, Germany
* These authors contributed equally to this work
Present address: Institute of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany

Correspondence and requests for materials should be addressed to A.A.
(adriano@pathol.unizh.ch).

Presse- und Öffentlichkeitsarbeit
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Str 10
13125 Berlin
Barbara Bachtler
Tel: 030/94 06 – 38 96
Fax:030/94 06 – 38 33
e-mail:bachtler@mdc-berlin.de

Media Contact

Barbara Bachtler idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…