Nervenzellen lernen am besten im Team
Forscher sehen dem Gehirn beim Lernen zu
Lernen ist Nervenzellentraining: Wie ein Muskel durch stete Beanspruchung wächst, so wächst auch der für bestimmte Reize zuständige Bereich im Gehirn, wenn er über längere Zeit stimuliert wird. Besonders gut funktioniert das, wenn mehrere Reize zeitgleich verarbeitet werden müssen (Koaktivierung): Benachbarte Nervenzellen verbessern dann ihre Zusammenarbeit. Diese Effekte konnten die RUB-Forscher Prof. Dr. Martin Tegenthoff (Neurologische Universitätsklinik Bergmannsheil), PD Dr. Hubert Dinse (Institut für Neuroinformatik) und Prof. Dr. Volkmar Nicolas (Radiologische Universitätsklinik Bergmannsheil) im Rahmen einer interdisziplinären Zusammenarbeit mit der funktionellen Kernspintomografie (fMRI) erstmals genau beobachten. Über ihre Ergebnisse berichten sie in der US-Fachzeitschrift NEURON.
Dem Gehirn beim Lernen zusehen
Die funktionelle Kernspintomografie macht möglich, was sich schon Anfang des vergangenen Jahrhunderts der Neurophysiologe Charles S. Sherrington als ideale Untersuchungsmethode für die Hirnfunktion vorstellte: Um die Vorgänge im Hirn beobachten zu können, möge doch jede Nervenzelle, immer wenn sie aktiv ist, wie eine kleine Lampe aufleuchten. Mit der fMRI kann man von außen die Aktivität von Nervenzellen in der Großhirnrinde messen, ohne die Versuchsperson zu belasten.
Die Karte vom Körper liegt im Kopf
Mit dieser Methode lässt sich auch die sog. kortikale Karte betrachten, die jeder Mensch von seiner Körperoberfläche im Kopf hat: Die Verbindungen zwischen Haut und Großhirnrinde sind topographisch angelegt, d.h. benachbarte Punkte auf der Haut werden auch im Gehirn benachbart repräsentiert. Reizt man zwei eng zusammenliegende Punkte auf der Haut, so werden auch im Gehirn nah beieinanderliegende Stellen aktiviert. Lernvorgänge zeigen sich im Gehirn u. a. daran, dass die Kontaktstellen der Informationsübermittlung zwischen einzelnen Nervenzellen (Synapsen) ihre Übertragungseigenschaften verbessern. Das funktioniert dann am besten, wenn die benachbarten Zellen zeitgleich gereizt werden. Um diesem Effekt auf den Grund zu gehen, nahmen die Forscher den Hirnbereich, der die Zeigefingerspitze repräsentiert, genau unter die Lupe.
Wie viele Nadeln fühlt man?
Ausgangspunkt der Untersuchung war die taktile „2-Punkte-Diskriminationsschwelle“: Die Neurowissenschaftler ermittelten zunächst die Fähigkeit von Versuchspersonen, zwei Punkte auf ihrer Zeigefingerkuppe räumlich zu unterscheiden. Dazu berührten die Probanden zwei Nadeln, die in unterschiedlichen Abständen zueinander standen. Bis zu einer gewissen Nähe nahmen sie die Spitzen noch als zwei getrennte wahr, standen sie jedoch sehr nahe beisammen, wurden sie als eine Nadel wahrgenommen. Danach ging es ans Lernen: Mithilfe einer kleinen vibrierenden Membran, die auf dem Finger befestigt wurde, reizten die Forscher einen Bereich von etwa einem Zentimeter Durchmesser auf der Zeigefingerkuppe der Probanden drei Stunden lang.
Neue Gehirntopographie nach dem Nervenzellentraining
Den Lernerfolg konnten sie dann nicht nur daran sehen, dass die Versuchspersonen enger beieinander liegende Nadelspitzen unterscheiden konnten als vorher, sondern sie konnten ihn auch mit der funktionellen Kernspintomographie (fMRI) direkt im Gehirn betrachten: Der Bereich des Gehirns, der bei leichter elektrischer Stimulation des Zeigefingers aktiv war, war gut abgegrenzt zu erkennen. Die fMRI-Messung nach den drei Lernstunden zeigte, dass sich das für die Zeigefingerkuppe zuständige Hirnareal deutlich vergrößert und verlagert hatte. „Eine vermehrte Aktivität war ausschließlich im Repräsentationsareal des zuvor gereizten Zeigefingers feststellbar, nicht dagegen im Areal des Zeigefingers der anderen Hand, der nicht koaktiviert wurde“, erklären die Forscher.
Komplexe Netzwerke werden ausgebaut
Diese Ausdehnung der Aktivierungsbereiche war in dem Teil des Gehirns zu finden, der als „Eingangstor“ für Informationen des Tastsinns in der Großhirnrinde dient (primärer somatosensorischer Kortex). Aber auch in Hirnregionen, die für die weitere, komplexere Informationsverarbeitung zuständig sind (sekundärer somatosensorischer Kortex), stellten die Forscher eine deutliche Zunahme der Hirnaktivität nach dem Lernen fest. „Die Koaktivierung führte somit dazu, dass sich die Aktivierung von komplexen Neuronen-Netzwerken räumlich massiv ausdehnte“, fasst Dr. Dinse zusammen. Der Lernerfolg war allerdings zeitlich befristet: Ebenso wie die Veränderung der Wahrnehmungsschwelle bildeten sich die Veränderungen der Hirnaktivität innerhalb von 24 Stunden wieder zurück.
Den Lernerfolg vorhersagen
Die Studie belegt, dass entgegen früheren Annahmen auch im erwachsenen Gehirn in den kortikalen Karten weitreichende Reorganisationsprozesse stattfinden. Diese Prozesse betreffen Bereiche, die millimeter- oder sogar zentimetergroß sind. Besonders interessant ist, dass sich bei Versuchspersonen, deren 2-Punkte-Diskrimination sich am meisten verbessert hatte, auch die aktivierten Hirnbereiche des primären somatosensorischen Kortex am meisten vergrößert hatten. Umgekehrt hatten Probanden, deren aktivierte Hirnbereiche sich nur wenig vergrößert hatten, auch nur eine geringfügig verbesserte Diskriminationsfähigkeit. Das Ausmaß des Lernerfolgs ist also an den Veränderungen der funktionellen Topographie der Hirnrinde ablesbar. „Rückblickend ist der Lernerfolg aus den fMRI Bildern direkt vorhersagbar“, so die Forscher.
Passives Lernen könnte helfen, Defizite auszugleichen
Für die Zukunft hoffen die Forscher, ihre Koaktivierungstechnik noch zu verfeinern, so dass die Lernerfolge vielleicht länger anhalten. Auf diese Weise wäre es möglich, Beeinträchtigungen im Gehirn auszugleichen. „Das ist z. B. wichtig für die Altersforschung“, erläutert Dr. Dinse, „zumal ältere Menschen, die oft mit mannigfaltigen Defiziten zu kämpfen zu haben, häufig nicht mehr aktiv lernen können oder wollen. Für solche Menschen wäre das passive Lernen durch Koaktivierung eine große Hilfe.“
Titelaufnahme
Burkhard Pleger, Ann-Freya Foerster, Patrick Ragert, Hubert R. Dinse, Peter Schwenkreis, Jean-Pierre Malin, Volkmar Nicolas and Martin Tegenthoff: Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex. In: Neuron, Vol. 40, 643-653, October 30, 2003
Weitere Informationen
PD Dr. Hubert R. Dinse
Institut für Neuroinformatik
der Ruhr-Universität 44780 Bochum
Tel: 0234/32-25565, Fax: -14209
Email: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de
Prof. Dr. Martin Tegenthoff
Neurologische Universitätsklinik
der Ruhr-Universität Bochum in den
Berufsgenossenschaftlichen Kliniken Bergmannsheil
Bürkle-de-la-Champ-Platz 1, 44789 Bochum
Tel: 0234/302-6808, Fax: -6888
Email: martin.tegenthoff@ruhr-uni-bochum.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…