Erste Kreiselmoleküle drehen sich in Erlangen

Die Scheibe an der Achse vertritt in diesem Modell die rotierende Eisenverbindung.

152 Jahre nach der Erfindung des Gyroskops, bei Spielzeug-Fans besser als Kreisel bekannt, haben Chemiker der Universität Erlangen-Nürnberg sein nahezu exaktes molekulares Abbild synthetisiert. Die ersten molekularen Kreisel könnten die Vorreiter einer völlig neuen Klasse von Molekülen sein, die für die Nanotechnologie großen Nutzen versprechen. Von dem Erfolg des japanischen Gastwissenschaftlers Dr. Takanori Shima am Lehrstuhl für Organische Chemie von Prof. Dr. John A. Gladysz wird die renommierte Fachzeitschrift „Angewandte Chemie“ im Oktober 2004 auf ihrer Titelseite berichten.

Spielzeuggyroskope, eine Kreisel-Variante, bestehen aus zwei Teilen, dem „Rotator“, einer rotierenden Achse und Scheibe, und dem „Stator“, zwei bis vier feststehenden Speichen, die beide Enden der Achse verbinden. Ohne äußere Krafteinwirkung behält die Rotationsachse ihre Orientierung bei. Wirkt eine Kraft – in vielen Fällen die Gravitationskraft – kommt es zum Phänomen der Präzession.

Der Durchbruch zur Synthese von Verbindungen, die sämtliche Eigenschaften von Spielzeuggyroskopen aufweisen, ist Dr. Shima nun gelungen. Den Platz im Zentrum der Konstruktion nimmt ein Eisenatom ein. Es steht in der Mitte der Achse zwischen den zwei Phosphoratomen; zugleich bildet es mit drei Kohlenmonoxid-Molekülen eine sogenannte Eisentricarbonyl-Gruppe. Um die Gruppe schließt sich ein Käfig aus drei Gitterstäben, die jeweils von einem Phosphoratom zum anderen den Bogen schlagen. Jede dieser Speichen besteht aus 10 bis 14 aneinanderhängenden Methylengruppen, die zunächst wie lose flatternde Teilbänder an beiden Achsenenden angeheftet sind und über eine dreifache Alken-Metathese zu Verbrückungen geschlossen werden. Nachfolgende katalytische Reaktionen stabilisieren den Käfig. In dessen Mitte hat die Gruppe um das Eisenatom genug Platz zum Rotieren, wenn die Zahl der Brückenglieder größer als zehn ist. So lässt sich eine Rotationsbarriere über die Länge der Methylenkette einführen.

Weitere Informationen:
Prof. Dr. John A. Gladysz
Lehrstuhl für Organische Chemie I
Universität Erlangen-Nürnberg
Tel.: 09131/85- 26865
gladysz@chemie.uni-erlangen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…