Die Kannenpflanze bringt Insekten mit Aquaplaning zu Fall
Forscher vom Würzburger Biozentrum berichten in PNAS
Bei tropischen Kannenpflanzen dienen die Blätter dazu, Insekten zu fangen und dann zu verdauen. Wie genau werden die exotischen Gewächse ihrer Beute habhaft? Dafür hatte die Wissenschaft bislang mehrere Erklärungen zu bieten. Forscher vom Biozentrum der Uni Würzburg haben jetzt herausgefunden, welche Fangvorrichtungen für den Jagderfolg der Pflanze am wichtigsten sind.
Die Fallen des Tropengewächses bestehen aus Blättern, die zu länglichen Kannen umgeformt sind und an deren Rand süßer Nektar produziert wird. Das lockt die Insekten an. Sie laufen dann auf dem Kannenrand umher und fallen schließlich in den Behälter. Von dort gibt es kein Entrinnen mehr. Liegt die Beute schließlich entkräftet am Grund der Kanne, wird sie von Enzymen zersetzt – so entsteht eine Art Zusatzfutter für die Pflanze, die an nährstoffarmen Stellen wächst.
Warum aber fallen die Insekten in die Kanne hinein? Liegt es an den sehr rutschigen Wachsoberflächen an den Innenwänden der Kanne? Oder betäubt die Pflanze ihre Beute mit Alkaloiden? Nur zum Teil, meinen die Würzburger Biologen Holger Bohn und Walter Federle. Sie sind davon überzeugt, den wichtigsten, bisher völlig übersehenen Fangmechanismus entdeckt zu haben: Demzufolge schnappt die Kannenpflanze ihre Opfer mit speziellen Oberflächenstrukturen, auf denen die Haftorgane der Insekten Aquaplaning machen.
Wie die Forscher in der US-Fachzeitschrift PNAS berichten, weist der Kannenrand eine regelmäßige Mikrostruktur aus radial verlaufenden Rillen auf. Die selbst sind wiederum treppenartig aufgebaut, die Stufen fallen zum Inneren der Kanne hin ab. Im Gegensatz zu fast allen anderen Pflanzenoberflächen ist diese Oberfläche komplett benetzbar, entweder mit Regenwasser oder mit dem Nektar, der am Rand der Kanne produziert wird. Sie ist darum oft mit einem dünnen Flüssigkeitsfilm überzogen – für Insekten kommt das einer Rutschbahn gleich.
Wie ausgeklügelt das System tatsächlich ist, haben Bohn und Federle mit Weberameisen (Oecophylla smaragdina) gezeigt. Diese Tiere besitzen an den Füßen zwei unterschiedliche Vorrichtungen, mit denen sie sich auf fast allen Oberflächen festhalten können. Da sind zum einen mit Flüssigkeit gefüllte Haftkissen, eines pro Fuß. Sie sondern einen hauchdünnen Sekretfilm ab und ermöglichen es der Ameise, selbst auf perfekt glatten Oberflächen so gut Halt zu finden, dass sie dabei noch mehr als das Hundertfache ihres eigenen Körpergewichts als Zusatzlast tragen können. Hinzu kommen an jedem Fuß zwei Krallen, die der Anheftung an rauen Oberflächen dienen.
Die Kannenpflanze Nepenthes bicalcarata schafft es, beide Haftmechanismen gleichzeitig wirkungslos zu machen. Indem sie den Rand ihrer Falle mit Wasser benetzt hält, nimmt sie den Haftkissen jegliche Wirkung. Und die speziell strukturierte Oberfläche sorgt dafür, dass die Krallen der Ameisen nur in einer Richtung Halt finden. Die Tiere können zwar in die Kanne hineinlaufen, aber nicht mehr aus ihr entkommen.
Der Aquaplaning-Mechanismus bringt es mit sich, dass die Ameisen auf unbefeuchteten Kannenrändern ohne Probleme laufen können. Bei trockenem Wetter ernten sie daher unbehelligt den Kannennektar. Sobald der Rand aber von Wasser benetzt ist, kann die Kanne viele Ameisen „auf einen Streich“ fangen.
Eine zusätzliche Beobachtung machten die Biologen bei Nepenthes alata, einer Kannenpflanze mit Wachsplättchen auf der Innenwand. Diese Pflanze fing bei Trockenheit zwar wesentlich mehr Ameisen als ihre Verwandte Nepenthes bicalcarata. Ist ihr Kannenrand aber feucht, dann arbeitet die Falle deutlich effektiver. Damit scheint das Aquaplaning ein Effekt zu sein, den vermutlich alle Kannenpflanzen nutzen.
Holger Bohn und Walter Federle: „Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface“, PNAS Vol. 101, Nr. 39, 28. September 2004, Seiten 14138-14143.
Weitere Informationen: Dr. Walter Federle, T (0931) 888-4321, Fax (0931) 888-4309, E-Mail: wfederle@biozentrum.uni-wuerzburg.de
Media Contact
Weitere Informationen:
http://www.zv.uni-wuerzburg.de/studentenkanzlei/ http://www.zv.uni-wuerzburg.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…