Zwischen den Realitäten
Kernspintomografie-Studie aus dem Max-Planck-Institut für Hirnforschung enthüllt, wie das Gehirn Illusionen konstruiert
Werden uns zwei visuelle Reize abwechselnd in bestimmten zeitlichen und räumlichen Abständen angeboten, nehmen wir eine Scheinbewegung wahr. Typische Anwendung findet dieses Phänomen als Daumenkino: Aus einer Folge von statischen Bildern entsteht hier beim Blättern der Eindruck einer kontinuierlichen Bewegung. Das wird auch gern in der Werbebranche genutzt, um Leuchtreklame in Bewegung zu setzen. Selbst wenn die räumlichen Abstände der abwechselnd gezeigten Objekte sehr groß sind, interpretiert unser Gehirn das Gesehene als eine Bewegung. Doch wo im Gehirn wird diese Illusion konstruiert? Lars Muckli und sein Team am Max-Planck-Institut für Hirnforschung in Frankfurt/Main konnten jetzt nachweisen, dass bereits der primäre visuelle Kortex an der Verarbeitung der Scheinbewegung beteiligt ist, wahrscheinlich unter dem Einfluss höherer Zentren im Gehirn, welche die Illusion selbst erzeugen (PLoS Biology, 18. Juli 2005).
Um die Frage nach dem Ursprung visueller Illusionen zu beantworten, nutzen Lars Muckli und seine Arbeitsgruppe die funktionelle Magnet-Resonanz-Tomografie (fMRT) am erst im Mai 2004 eröffneten Zentrum für Bildgebung in den Neurowissenschaften (Brain Imaging Center Frankfurt am Main). Das Zentrum entstand durch eine Kooperation zwischen dem Max-Planck-Institut für Hirnforschung und der Frankfurter Uniklinik. Die Magnet-Resonanz-Tomografie ist für die Versuchspersonen völlig ohne Strahlenbelastung und liefert den Wissenschaftlern funktionelle Bilder mit hoher räumlicher Auflösung.
In der Studie wurden den Probanden zwei Quadrate gezeigt, die abwechselnd in einigen Zentimetern Entfernung auf einem Bildschirm aufleuchteten. Währenddessen zeichneten die Forscher das Aktivitätsmuster im Gehirn der Versuchspersonen auf. Sie fanden eine erhöhte Aktivität in zwei Regionen der primären visuellen Hirnrinde (V1), die der Repräsentation der beiden Quadrate entsprachen.
Erstaunlicherweise konnte zusätzlich zwischen den beiden visuellen Feldern Aktivität gemessen werden, obwohl dort kein visueller Reiz als Aktivitätsauslöser den Probanden gezeigt wurde. Diese Region war aktiv, wenn die Versuchspersonen das Quadrat zwischen den beiden präsentierten Quadraten wandern sahen. Dagegen gab es keine Aktivität, wenn beide Quadrate gleichzeitig aufflackerten. Anscheinend lösen die beiden nacheinander aufblitzenden Lichtreize im Gehirn ein Aktivitätsmuster aus, welches die Lücke zwischen den beiden Quadraten füllt und uns eine Bewegung wahrnehmen lässt.
Um diese „Lückenfüller“-Theorie zu unterstützen, führten die Hirnforscher ein zusätzliches Experiment durch. Vier Quadrate suggerierten abwechselnd entweder eine horizontale oder eine vertikale Bewegung. Hatten die Probanden von einer vertikalen Bewegung berichtet, wurde auch mehr Aktivität in der V1-Region, die normalerweise von vertikal bewegten Reizen stimuliert wird, gemessen.
Nun stellt sich die Frage, wer im Gehirn die fehlenden Daten ergänzt, die zur Wahrnehmung einer Bewegung notwendig sind. Nach diesen Befunden scheint es nicht die primäre visuelle Hirnrinde zu sein, die diese Lücke füllt. Dazu ist die mittlere Region zu weit von den beiden äußeren entfernt. Vielmehr vermuten die Wissenschaftler, dass diese Daten in einem Areal mit den Namen hMT/V5+ ergänzt werden. Dieses ist in der Verarbeitungshierarchie des Gehirns höher angesiedelt. Bisher weiß man, dass Projektionen vom Areal hMT/V5+ zum primären Kortex V1 existieren und dass es dort Nervenzellen gibt, die den Reiz als Ganzes verarbeiten können.
Die Arbeit der Max-Planck-Forscher macht deutlich, dass sich das menschliche Gehirn in unserem Alltag als ein kreativer Brückenbauer bewährt und in der Lage ist, aus wenigen Bruchstücken einen kontinuierlichen Zusammenhang zu konstruieren. Überraschend ist, dass sich jene Hirnareale, von denen man bisher annahm, dass sie den Reiz ohne größere Veränderungen abbilden, auch als Helfershelfer bei der Konstruktion von Illusionen erweisen. Unsere Wahrnehmung ist dadurch oft trügerisch. Doch wir profitieren auch von dieser Synthese: Aus einzelnen Ansichten entsteht ein sinnhaftes Ganzes.
Originalveröffentlichung:
Lars Muckli, Axel Kohler, Nikolaus Kriegeskorte, Wolf Singer
Primary Visual Cortex Activity Along the Apparent-Motion Trace Reflects Illusory Perception
PLoS Biology, August 2005, Vol. 3, Issue 8, Advanced Online Publication 18 July 2005
Media Contact
Weitere Informationen:
http://www.mpg.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…