Kohleverflüssigung
Hydrierung in Gegenwart von Boran- und Iod-Katalysatoren ebnet den Weg zur Verflüssigung von Magerkohle
Die Verknappung der weltweiten Ölreserven lässt den Ölpreis eskalieren – und macht die in weitaus größeren Mengen vorhandene Kohle wieder interessant als Ausgangsmaterial für flüssige Kraftstoffe und chemische Rohstoffe. Forscher vom Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr haben ein neues Verfahren entwickelt, das erstmals auch hoch-inkohlte Steinkohle („Magerkohle“) für eine Verflüssigung zugänglich macht; dieser Kohletyp konnte bisher ausschließlich in Verbrennungs- und Vergasungsprozessen genutzt werden.
„Technologien zur Kohleverflüssigung stehen seit Anfang des letzten Jahrhunderts zur Verfügung, aber die Kosten geben Anlass, nach effektiveren neuen Prozessen zu suchen,“ erklärt Matthias W. Haenel. Kohle ist ein kompliziertes, schwer zu analysierendes Gemisch aus organischen Bestandteilen. Bei der direkten Kohleverflüssigung nach Bergius wird die Kohle unter Druck (>30 MPa) bei 450°C in Anwesenheit eines Lösungsmittels und eines Eisenoxid-Katalysators mit Wasserstoff umgesetzt. Allerdings ist die Aktivität des Katalysators nur gering, denn das feste Eisenoxid kann nicht in die makromolekulare Netzwerkstruktur der unlöslichen Kohle eindringen. Magerkohle – Steinkohle mit nur geringem Gehalt an flüchtigen Bestandteilen – wird auf diese Weise gar nicht umgesetzt. Haenel und sein Team hofften, dass ein gelöster Katalysator bessere Dienste leisten würde. Viel versprechend schien ihnen die Klasse der so genannten Boran-Katalysatoren, Bor-Wasserstoff-Verbindungen, die Wasserstoff auf organische Moleküle übertragen können. Ihre Studien mit einer deutschen Magerkohle zeigten, dass eine Mischung aus Natriumborhydrid und Iod, aus der in der Reaktionslösung ein Iodboran-Katalysator erzeugt wurde, besonders effektiv arbeitet. Überraschenderweise ist unter den drastischen Reaktionsbedigungen (25 MPa Wasserstoffdruck, 350°C) auch Iod allein katalytisch aktiv, der Spitzenreiter ist Bortriiodid.
Die Löslichkeit der Kohle in Pyridin wird durch diese Behandlung drastisch erhöht. Das liegt zum einen daran, dass Kohlenstoff-Kohlenstoff-Bindungen zwischen aromatischen und nicht-aromatischen (aliphatischen) Molekülteilen gespalten und die freien „Bindungsarme“ durch Wasserstoff abgesättigt (hydriert) werden – die Netzwerkstruktur der Kohle bricht auf. Zum anderen werden Doppelbindungen aromatischer Ringsysteme partiell hydriert, so dass der aliphatische Anteil auf Kosten des aromatischen steigt. Das neue Verfahren ist die erste „echte“ Kohlehydrierung im Sinne einer Wasserstoffaddition an ungesättigte Strukturen. So vorbereitet könnten erstmals auch hoch-inkohlte Steinkohlen in einem anschließenden konventionellen Hydrocracking-Prozess verflüssigt werden.
Autor: Matthias W. Haenel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr (Germany), http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html
Angewandte Chemie: Presseinfo 02/2006
Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen
Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…
Aufladen der Zukunft: Batterien für extreme Kälte dank negativer thermischer Ausdehnung
Die meisten Feststoffe dehnen sich aus, wenn die Temperatur steigt, und schrumpfen, wenn sie abkühlen. Manche Materialien zeigen jedoch das Gegenteil und dehnen sich bei Kälte aus. Lithiumtitanphosphat ist eine…
Selbstzerstörende Krebszellen: Durchbruch in der RNA-Forschung
Jülicher Wissenschaftler nutzen neuartige RNA-Technologie, um Tumore im Gehirn selektiv auszuschalten. Eine anpassbare Plattformtechnologie zur Zerstörung von Glioblastom-Krebszellen Mit einer speziellen RNA-Molekül-Technologie hat ein Team unter der Leitung von Jülicher…