Hochsensible Spürnase für Halogenide
Wissenschaftler des Fraunhofer IGB haben einen hochempfindlichen Halogenidsensor entwickelt. Er weist selbst geringste Konzentrationen von Chlorid in kleinen Probenmengen nach. Der Sensor ist Kernstück eines Messverfahrens, das Ingenieure des Fraunhofer IPA parallelisiert und für den industriellen Einsatz automatisiert haben.
Die etablierten Verfahren zur Messung von Halogenidkonzentrationen benötigen entweder relativ viel Testflüssigkeit oder sie weisen kleinste Mengen nicht mehr nach: Festkörperelektroden zeigen Fluorid, Chlorid, Bromid oder Jodid bis zu einer Konzentration von 50 µM an, benötigen hierzu allerdings Probenvolumina von mehreren Millilitern. Fluoreszenzfarbverfahren benötigen zwar nur sehr kleine Volumina um die 10 µl, die Nachweisgrenze liegt dafür bei ca. 500 µM. Wissenschaftler des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB haben einen Chlorid-Sensor entwickelt und in Zusammenarbeit mit der Waibstadter Firma Haaf Mess-Regeltechnik verbessert, der Konzentrationen bis hinunter zu 10 µM misst und dabei mit Probenvolumina in der Größenordnung von 20 µl auskommt. Mit diesem Sensor als Kernstück entstand am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA ein automatisiertes Messverfahren, das mit Hilfe eines Mehrfach-Messkopfs innerhalb weniger Minuten eine 96er-Mikrotiterplatte scannen kann.
Der Halogenidsensor ist Teil eines Fließinjektionssystems, d. h. die Proben laufen in einer speziell geformten Durchflusszelle an der Oberfläche der ionensensitiven Elektrode vorbei. Die während der Kontaktzeit auftretende Potentialdifferenz zur Bezugselektrode ist direkt proportional zum Anteil der Chloridionen. „So sind selbst Konzentrationen zwischen 10 und 100 µM noch nachweisbar und das mit einer Probenmenge von lediglich 20 µl“, erklärt Dr. Christiane Buta vom Fraunhofer IGB. Sie arbeitet derzeit mit Elektroden zur Bestimmung von Chloridionen. „Es spricht vieles dafür, dass sich mit unserem Verfahren auch hochempfindliche Sensoren für andere Halogenide entwickeln lassen“, erklärt die Biologin. In der Umwelt auftretende Chlorid-Vorkommen sind zwar mit den bestehenden Verfahren problemlos nachzuweisen. Trotzdem sieht sie Bedarf für einen hochempfindlichen Sensor, sobald es um Sonderfälle geht, wie bei Herstellung und Überwachung von Reinstwässern für den Kraftwerksbetrieb oder im Zusammenhang mit biologischen, ökologischen und medizinischen Fragestellungen, bei denen Chlorid-Schwankungen vor einem bestimmten Hintergrund eine Rolle spielen.
„Man könnte beispielsweise die Stoffwechselaktivität von Mikroorganismen verfolgen, die halogenidhaltige Schadstoffe abbauen“, sagt Buta. Solche Untersuchungen können zu neuen Verfahren führen, um verunreinigte Böden zu sanieren oder spezielle Industrieabwässer zu reinigen. Ebenfalls für die chemische und pharmazeutische Industrie interessant sind halogenierende bzw. dehalogenierende Enzyme. Dies sind Biokatalysatoren, die sehr spezifisch z. B Chlor in eine chemische Verbindung einfügen oder daraus abspalten. Eine am IGB entwickelte Anwendung ist das Bilanzieren von Chlorid-Umsätzen zum Screening nach neuen halogenierenden oder dehalogenierenden Enzymen. Dazu wird aus Bodenproben die Erbsubstanz der darin befindlichen Mikroorganismen aufgereinigt und in einen Labor-Bakterienstamm (E. coli) verpackt, der die auf diese DNA kodierte Enzyme herstellen kann. Die individuellen Klone dieser Genbank werden in 96er Mikrotiterplatten vereinzelt, so dass mit Hilfe der Halogenidsonde in jedem Probengefäß einzeln gemessen werden kann, ob beispielsweise eine zugesetzte chlorierte Verbindung dechloriert werden kann.
Die Wissenschaftler am IGB testeten anfangs jede Probe einzeln. Um für die industrielle Anwendung einen größeren Probendurchsatz zu gewährleisten, haben Ingenieure des Fraunhofer IPA den Messvorgang parallelisiert und automatisiert. Im Gerät finden 16 handelsübliche 96er Mikrotiterplatten Platz. Ein Pipettier-Roboter entnimmt vier Proben gleichzeitig und injiziert sie in spezielle Messschleifen. Jede Probe fließt dann durch die Messzellen am Chlorid-Sensor vorbei. Eine vom IPA entwickelte Software steuert den gesamten Prozess und wertet die Messergebnisse der Sensoren aus, während das System bereits die nächste Probe aufnimmt. „Mit dieser Anlage gelingt es, pro Minute mehr als zehn Proben auszuwerten“, sagt Stefan Wößner vom Fraunhofer IPA. „D. h. für eine 96er Mikrotiterplatte benötigt sie nur neun Minuten, was um mehrere Größenordnungen schneller ist, als die manuelle Messung und Auswertung“, ergänzt er. Mit sehr einfachen Mitteln könnte auch eine weitere Parallelisierung des Systems realisiert werden, um einen noch höheren Probendurchsatz zu gewährleisten; der Übergang von 96er auf 384er Mikrotiterplatten würde dazu beitragen, das Zeitintervall zwischen zwei Rüstschritten zu vergrößern und somit den Automatisierungsgrad weiter zu erhöhen.
Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dipl.-Phys. Stefan Wößner, Telefon: 0711/970-1234, Telefax: 0711/970-1005, E-Mail: sfw@ipa.fhg.de
Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik IGB
Henrike Henschen, Telefon: 0711/970-4031, Telefax: 0711/970-4200, E-Mail: henschen@ipa.fhg.de
Media Contact
Weitere Informationen:
http://www.igb.fhg.de/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?
Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…
Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen
DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…
Mit Wearables die Gesundheit immer im Blick
Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…