Lernen im Computermodell
Dass das Gehirn lernen kann, liegt an den besonderen Eigenschaften der Nervenzellen, insbesondere deren Verbindungen, der Synapsen. Bei jeder Aktivität des Gehirns werden Informationen in Form von kurzen, elektrischen Impulsen von Zelle zu Zelle weitergegeben – man sagt, die Nervenzellen „feuern“.
Dabei kann die Weitergabe von Signalen regelrecht geübt werden. Wenn eine Zelle A einen Impuls aussendet, der in Zelle B eine Antwort auslöst, wird der Kontakt von der Zelle A zur Zelle B verstärkt. Besteht kein derartiger Kausalzusammenhang oder feuert wiederholt B kurz vor A, wird der Kontakt geschwächt. Durch diese so genannte „spike-timing dependent plasticity“ (STDP) werden Nervenbahnen durch häufige Wiederholungen ausgebaut. Andere Verknüpfungen hingegen, die selten gebraucht werden, verfallen.
Diese „Plastizität“ des Gehirns, die Fähigkeit zur physiologischen und strukturellen Veränderung, gilt als Grundlage des Lernens. In einer aufwändigen Computersimulation von 100.000 Neuronen mit jeweils 10.000 Kontakten – das entspricht etwas einem Kubikmillimeter Großhirnrinde – haben Abigail Morrison, Ad Aertsen und Markus Diesmann nun Hinweise darauf gefunden, dass STDP alleine noch nicht ausreicht, um Lernvorgänge in Zellen zu erklären. Die Arbeit der Wissenschaftler vom Bernstein Center for Computational Neuroscience, der Universität Freiburg und vom RIKEN Brain Science Institute in Tokyo wird in der Juni-Ausgabe der Zeitschrift Neural Computation publiziert.
Schon in früheren Experimenten konnten die Wissenschaftler zeigen, dass ihre Computersimulation viele Eigenschaften des Gehirns recht gut widerspiegelt. Die virtuellen Neurone feuern mit etwa gleicher Frequenz wie im Gehirn, die Aktivität schaukelt sich weder hoch, noch ebbt sie ab – das System befindet sich in einem „dynamischen Gleichgewicht“. Neu in ihrem Modell ist allerdings, dass die virtuellen neuronalen Verbindungen nun auch die Eigenschaft der Plastizität besitzen. Dazu entwickelte Morrison zunächst eine neue mathematische Formulierung der STDP-Lernregel, welche die in der Literatur publizierten experimentellen Ergebnisse deutlich besser beschreibt. Damit kommt das Modell der Realität noch ein Stück näher.
Um zu untersuchen, ob das Computermodell auch Lernvorgänge simulieren kann, regten die Wissenschaftler wiederholt eine bestimmte Gruppe von Neuronen an. Dabei beobachteten sie, dass zunächst genau das passierte, was ein Lernmodell voraussagen würde: Da die stimulierten Neurone die fortwährenden Impulse an die ihnen nachgeschalteten Neurone weitergaben, wurden diese Kontakte verstärkt. Dies ging aber auf Kosten der Kontakte von anderen vorgeschalteten Zellen im Netzwerk. Die Zellen hörten vornehmlich auf die von außen eingegebenen Signale, dadurch wurden die anderen Kontakte überflüssig und entsprechend abgebaut. Wie die Wissenschaftler feststellten, koppelte sich die ganze Gruppe von Nervenzellen, die auf die Stimulation reagierten, nach einiger Zeit vom Netzwerk ab.
STDP alleine kann also Lernen in einem größeren neuronalen Netzwerk nicht erklären, es müssen weitere Bedingungen erfüllt sein, damit das System tatsächlich lernen kann. Es gibt schon einige Hinweise darauf, was für Bedingungen das sein könnten. Mit der Simulation von großen Netzwerken haben Morrison und ihre Kollegen ein gutes Werkzeug in der Hand, um die verschiedenen Modelle zu überprüfen und sich dem Geheimnis des neuronalen Lernens weiter zu nähern.
Quelle:
Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing dependent plasticity in balanced random networks. Neural Computation, 19 (6) 1437-1467
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.6.1437
Kontakt:
Dr. Abigail Morrison
Diesmann Research Unit
Computational Neuroscience Group
RIKEN Brain Science Institute
2-1 Hirosawa
Wako City, Saitama 351-0198
Japan
tel: +81 48 467 9644
abigail@brain.riken.jp
Prof. Dr. Ad Aertsen
Bernstein Center für Computational Neuroscience
Albert-Ludwigs-Universität
Hansastrasse 9a
79104 Freiburg i.Br.
Tel: +49 (761) 203-9549
ad.aertsen@biologie.uni-freiburg.de
Media Contact
Weitere Informationen:
http://www.bccn-freiburg.de/ http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.6.1437Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sie verwandelt Materie mit Licht
Halb Chemikerin, halb Physikerin und voll und ganz Forscherin: Niéli Daffé befasst sich mit Materialien, die, wenn beleuchtet, Farbe oder Magnetisierung ändern. Mit SNF-Unterstützung untersucht sie dies mit Röntgenstrahlen. Schon…
Intelligentes Auto erkennt Herz-Kreislauf-Erkrankungen
Rund 270.000 Menschen erleiden in Deutschland pro Jahr einen Schlaganfall. Jeder fünfte Betroffene stirbt innerhalb der ersten Wochen an den Folgen. Um einem Schlaganfall vorzubeugen, ist es wichtig, die Symptome…
Neue Standards für die Oberflächenanalyse von Nanopartikeln
Die Bundesanstalt für Materialforschung und -prüfung (BAM) entwickelt in einem neuen EU-Projekt standardisierte Messverfahren zur Untersuchung der Oberflächen von Nanopartikeln. Ziel ist es, die Funktionalität und Sicherheit von Nanopartikeln weiter…