Neue Erkenntnisse zur Erbgut-Verdoppelung: LMU-Forscher analysieren Helikasen-Struktur
Ein ähnliches Protein kommt auch im menschlichen Organismus vor und erfüllt dort die gleichen Aufgaben wie in dem Bakterium. Es initiiert die Aufspaltung des Erbguts (DNA), damit diese anschließend verdoppelt oder repariert werden kann. Neben der Struktur von „Hel308“ konnten die Wissenschaftler zudem beobachten, welche Mechanismen Helikasen während der ersten Schritte bei der Aufspaltung des Erbguts einer Zelle einsetzen und woher sie ihre Energie beziehen.
Bei der Vervielfältigung und Reparatur des Erbinformationsträgers (DNA) einer Zelle nehmen die Helikasen eine wichtige Rolle ein. Die Helikasen initiieren die Entwindung der Einzelstränge der Basenpaare, die in einer Doppelhelixstruktur vorliegen. An diese Entwindung schließt sich dann direkt die Verdopplung der Erbgutstränge an. Eingeteilt sind die Helikasen in mindestens drei Überordnungen, den so genannten Superfamilien (SF). Ihre Untersuchung führten die Münchner Biochemiker Karl-Peter Hopfner, Katharina Büttner und Sebastian Nehring an der Helikase „Hel308“ des Archaebakteriums Archaeoglobus fulgidus durch. Für ihre Studie brachten die Forscher einen Komplex aus einem kurzen Erbgutstrang des Bakteriums mit insgesamt 15 Basenpaaren und der Helikase „Hel308“ in einen kristallinen Zustand., Anschließend wurde der Komplex mit einer Röntgenstrukturanalyse durchleuchtet. Ebenso wurde die Helikase ohne den Erbgutstrang untersucht.
„Wir konnten direkt 'sehen', wie sich die Helikase ähnlich wie eine Raupe über die Basenpaare der DNA bewegt“, erklärt Hopfner. Bei diesem Vorgang machten die Forscher eine überraschende Entdeckung: Die Helikase zog ihre Entwindungsenergie für die ersten Schritte der DNA-Teilung nicht aus dem Adenosintriphosphat (ATP), wie es bislang vermutet wurde. „Die Energie erhält die Helikase zunächst einmal aus der Bindungsenergie an das Erbgut der Zelle und anschließend, zur weiteren Bewegung, aus dem ATP“, sagt Hopfner. Dabei sind die Distanzen, die „Hel308“ bei der Erbgut-Entwindung zurücklegt, minimal. Sie erfolgen schrittweise von Basenpaar zu Basenpaar. „Rund 0,6 Nanometer ist so ein Schritt lang“, erklärt Hopfner. Zudem konnten die Münchner Wissenschaftler erstmals eine bestimmte Haarnadelstruktur auf „Hel308“ lokalisieren. Diese so genannte Beta-Haarnadelstruktur wirkt entscheidend mit bei der initialen Entwindung des Erbguts. Sie wirkt dabei wie ein Pflug, der durch die DNA fährt und die Basenpaare trennt.
Eine ähnliche Haarnadelstruktur gibt es auch auf einer Helikase, die bei dem Hepatitis-C Virus NS3 aktiv an der Aufspaltung des Erbguts beteiligt ist. Die Forscher vermuten, dass diese Struktur noch in zahlreichen weiteren Helikasen des Typs SF2 vorhanden sein könnte. Zudem wurden aber auch Unterschiede zu Helikasen des Typs SF1 deutlich. Während Helikasen des Typs SF2 eher wie ein Pflug arbeiten, schälen Helikasen des Typs SF1 einen Strang von dem anderen ab.
Wie die Helikasen vom Typ SF2 die Entwindung des Erbguts bewerkstelligen ist bis heute weit weniger gut erforscht als bei den Helikasen des Typs SF1. Mit ihren Ergebnissen konnten die Forscher nun erstmals die Unterschiede zwischen den Helikasen-Typen SF1 und SF2 verdeutlichen. Dazu haben die Münchner Biochemiker einen wichtigen Schritt zum besseren Verständnis der Mechanismen beigetragen, die bei den Helikasen vom Typ SF2 die Auftrennung des Erbguts einleiten.
Die neuen Erkenntnisse über die Mechanismen der Aufspaltung des Erbgutes durch „Hel308“ könnten nun helfen, wirkungsvollere Medikamente, etwa gegen das Hepatitis C-Virus, zu entwickeln. Denn Helikasen, die – wie „Hel308“ – meist den Superfamilien 2 und 3 angehören, sind wichtige Zielenzyme bei der Entwicklung von Inhibitoren, also Hemmstoffen gegen Krankheiten wie Hepatitis C.
Veröffentlichung:
„Structural basis for DNA duplex separation by a superfamily 2 helicase“, Karl-Peter Hopfner, Katharina Büttner, Sebastian Nehring, Nature Structural & Molecular Biology.
Ansprechpartner:
Prof. Dr. Karl-Peter Hopfner
Fakultät für Chemie und Pharmazie
Genzentrum der LMU
Tel: 089 / 2180 76 953
Fax: 2180 76 999
E-Mail: hopfner@lmb.uni-muenchen.de
Media Contact
Weitere Informationen:
http://www.uni-muenchen.de/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…