Beschützer des Erbguts: Struktur von Schlüsselenzym aufgeklärt
Die Erbinformation frei von Fehlern zu halten, ist Ziel und Herausforderung jedes lebenden Organismus, damit Zellfunktionen aufrechterhalten und intakte genetische Information an Nachfolgegenerationen weitergeben werden können. Eine wichtige Rolle beim Erhalt der genetischen Informationen spielen sogenannte RecQ-Helikasen.
Sie bilden eine Gruppe von Enzymen, die an elementaren DNA-basierten Prozessen wie Replikation, Rekombination und Reparatur beteiligt sind und stellen sicher, dass diese lebensnotwenigen Reaktionen korrekt ablaufen. RecQ-Helikasen sind evolutionär hoch konserviert und kommen in allen Lebewesen vor, von Bakterien bis zum Menschen.
Beim Menschen verursachen Fehlfunktionen dieser wichtigen Enzyme eheblichen Schaden an den Chromosomen, was mit schwerwiegenden Erkrankungen einhergeht. Um Therapien zur Behandlung solcher Erkrankungen entwickeln zu können, müssen zunächst die genauen Funktionsweisen der RecQ-Helikasen aufgeklärt werden.
RecQ4 an Krebsentstehung beteiligt
Wissenschaftler des Rudolf-Virchow-Zentrums für Experimentelle Biomedizin der Universität Würzburg untersuchten ein besonderes Mitglied dieser zentralen Enzymfamilie, welches als RecQ4 bezeichnet wird. Bislang war bekannt, dass die Beeinträchtigung der Funktion von RecQ4 beispielsweise die Entstehung verschiedener Krebsarten begünstigt und zum ungewöhnlich frühen Auftreten verschiedener Alterungserscheinungen führt. Außerdem sind Veränderungen der RecQ4-Helikase Ursache für die Entstehung systemischer Erkrankungen, wie dem Rothmund-Thomson-Syndrom und dem RAPADILINO-Syndrom, welche mit Veränderungen im Knochenbau und Wachstumsstörungen einhergehen.
Den Würzburger Wissenschaftlern aus der Arbeitsgruppe von Prof. Caroline Kisker gelang es nun, die Kristallstruktur der menschlichen RecQ4-Helikase zu bestimmen und sie stellten fest, dass RecQ4 im Vergleich zu allen anderen RecQ-Proteinen eine einzigartige Zusammensetzung besitzt.
Der zentrale Proteinkern besteht wie bei allen Vertretern der RecQ-Helikasen aus einem molekularen Kraftwerk, welches Energie zum Entwinden der doppelsträngigen DNA bereitstellt. Darüber hinaus fehlen jedoch weitere für die Enzymgruppe charakteristische funktionelle Proteinstrukturen. Dafür konnten die Forscher einen neuen, ungewöhnlichen Proteinabschnitt nachweisen, welcher vermutlich für die spezifische Funktion von RecQ4 von zentraler Bedeutung ist.
Ein besonderer Mechanismus
Aufgrund der besonderen strukturellen Eigenschaften von RecQ4 vermuten die Wissenschaftler, dass auch der Helikase-Mechanismus des Proteins auf ungewöhnliche Weise funktioniert. „Andere menschliche RecQ-Helikasen benutzen eine Art Keil, um DNA-Doppelstränge aufzuspalten“, erklärt Professor Kisker. „In RecQ4 konnten wir bisher keine derartige Struktur nachweisen, wodurch man sich fragen muss, wie das Enzym die doppelsträngige DNA auftrennen kann.“ Eine Möglichkeit wäre, dass RecQ4 die DNA stark biegt, was das Trennen in die Einzelstränge erleichtert – ein Mechanismus, der bei bakteriellen RecQ-Helikasen beschrieben wurde.
Eine Sonderstellung von RecQ4 lässt sich auch aus dessen Verteilung in der Zelle ableiten: als einzige RecQ-Helikase ist RecQ4 auch in den Mitochondrien nachweisbar. Das lässt vermuten, dass das Enzym auch an der Vervielfältigung oder dem Erhalt des mitochondrialen Erbguts beteiligt ist.
Entwicklung neuer Therapieformen
Die nun in der Fachzeitschrift Nature Communications veröffentlichten Erkenntnisse zur Struktur und Biochemie der RecQ4-Helikase bieten neue Einblicke in die Mechanismen, wie Proteine mit unserem Erbmaterial interagieren. Außerdem lassen sie Rückschlüsse auf das Zustandekommen von Krankheiten zu, die mit Veränderungen des RecQ4-Enzyms einhergehen. Nicht zuletzt stellt RecQ4 aufgrund seiner speziellen Struktur und seiner auffällig hohen Konzentration in den Zellen verschiedener Krebsarten ein vielversprechendes Ziel für die Entwicklung neuer Therapieansätze gegen Krebs dar.
Publikation:
Kaiser S., Sauer F., Kisker C. (2017) The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nature Communications 8, 15907
Website:
http://www.rudolf-virchow-zentrum.de/home.html
http://virchow.uni-wuerzburg.de/kiskerlab/
Kontakt:
Prof. Dr. Caroline Kisker (Strukturbiologie, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 31 – 80405, caroline.kisker@virchow.uni-wuerzburg.de
Dr. Frank Sommerlandt (Public Science Center, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 31 – 88449, frank.sommerlandt@uni-wuerzburg.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…