BESSY II: Was Molekül-Orbitale über die Stabilität aussagen

Molekulargeometrische Strukturen der trans- und cis-Isomere Fumarat und Maleat (oben, von links nach rechts) zusammen mit ihrem hydrierten Molekül, den Succinat-Dianionen (unten).
(c) HZB

Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die am besten geeigneten Verbindungen auszuwählen, um die Stabilität von Koordinationspolymeren zu optimieren.

Fumarat, Maleat und Succinat sind Carbonsäure-Dianionen vom Typ C4H2O4 oder C4H4O4 und können unterschiedlichen Geometrien (cis oder trans) und unterschiedliche Eigenschaften besitzen. Einige Varianten können beispielsweise metallische Elemente in organische Verbindungen einbauen und spielen damit eine Schlüsselrolle in der Koordinationschemie, andere Varianten sind in biologischen Prozessen wichtig. So entstehen Fumarat und Succinat als Zwischenprodukte in den Mitochondrien von Zellen. Maleat dagegen bildet sich in der Regel nicht in natürlichen biologischen Prozessen und wird genutzt, um haltbare Materialien herzustellen. Dabei stellt sich jedoch die Frage, ob diese Verbindungen ewig halten oder biologisch abbaubar sind.

Die Stabilität von Fumarat-, Maleat- und Succinat-Dianionen wird nicht nur durch ihre Molekülgeometrien beeinflusst, sondern auch durch die elektronische Struktur der Moleküle, insbesondere durch das höchste besetzte Molekülorbital (HOMO) und das niedrigste unbesetzte Molekülorbital (LUMO). Der Einfluss der Molekülorbitale auf die Stabilität dieser Moleküle ist jedoch noch nicht erforscht.

XAS und RIXS an BESSY II

Nun hat ein Team am HZB unter der Leitung von Prof. Alexander Föhlisch den Einfluss der elektronischen Struktur auf die Stabilität von Fumarat-, Maleat- und Succinat-Dianionen aufgeklärt. „Wir haben diese Verbindungen an BESSY II mit zwei verschiedenen, sehr leistungsfähigen Methoden analysiert“, sagt Dr. Viktoriia Savchenko, Erstautorin der Studie. So gibt die Röntgenabsorptionsspektroskopie (XAS) Aufschluss über die unbesetzten elektronischen Zustände eines Systems, während die resonante inelastische Röntgenstreuung (RIXS) Informationen über die besetzten höchsten Orbitale und über Wechselwirkungen zwischen den HOMO-LUMO-Orbitalen liefert. Die Ergebnisse können mit makroskopischen Eigenschaften, insbesondere der Stabilität, in Verbindung gebracht werden.

Maleat weniger stabil

Die Analyse der Spektraldaten zeigt, dass Maleat potenziell weniger stabil ist als Fumarat und Succinat. Und mehr noch: Die Analyse erklärt auch, warum: Die elektronische Dichte im HOMO-Orbital an der C=C-Bindung zwischen den Carboxylatgruppen könnte zu einer schwächeren Bindung von Maleat mit Molekülen oder Ionen führen. Fumarat und Succinat hingegen könnten stabiler sein, da ihre HOMO-Orbitale gleichermaßen delokalisiert sind. „Damit besteht die Möglichkeit, dass Maleat durch bestimmte Zusatzstoffe abgebaut werden könnte“, sagt Savchenko.

Originalpublikation:

Originalpublikation:

Physical Chemistry Chemical Physics (2024): Electronic structure, bonding and stability of fumarate, maleate, and succinate dianions from X-ray spectroscopy

Viktoriia Savchenko, Sebastian Eckert, Mattis Fondell, Rolf Mitzner, Vincius Vaz da Cruz and Alexander Föhlisch

DOI: 10.1039/D3CP04348G

https://www.helmholtz-berlin.de/news/bessy-ii-was-molekuel-orbitale-ueber-die-stabilitaet-aussagen/

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kollege Roboter soll besser sehen

CREAPOLIS-Award für ISAT und Brose… Es gibt Möglichkeiten, Robotern beizubringen, in industriellen Produktionszellen flexibel miteinander zu arbeiten. Das Projekt KaliBot erreicht dabei aber eine ganz neue Präzision. Prof. Dr. Thorsten…

Neue einfache Methode für die Verwandlung von Weichmagneten in Hartmagnete

Ein Forscherteam der Universität Augsburg hat eine bahnbrechende Methode entdeckt, um einen Weichmagneten in einen Hartmagneten zu verwandeln und somit magnetische Materialien zu verbessern: mithilfe einer moderaten einachsigen Spannung, also…

Neue Messmethoden zur Bestimmung der auditiven Kognition

Die Hochschule Hamm-Lippstadt (HSHL) arbeitet ab sofort mit einer neuen innovativen Software, die die Messung der auditiven Kognition ermöglicht. Da das Hören nicht ausschließlich durch die Ohren erfolgt, sondern ein…