Bild oder Spiegelbild? Laserlicht entscheidet über Händigkeit von Molekülen
„Für die Pharmazie wäre es ein Traum, wenn man statt mit nasser Chemie ein Molekül mit Licht von einer in die andere Händigkeit überführen könnte“, erklärt Prof. Reinhard Dörner vom Institut für Kernphysik der Goethe-Universität.
Sein Doktorand Kilian Fehre ist der Realisierung dieses Traumes nun einen entscheidenden Schritt nähergekommen. Seine Beobachtung: Je nachdem, aus welcher Richtung Laserlicht auf das Ausgangsmolekül trifft, entsteht die rechts- oder linkshändige Variante.
Für sein Experiment verwendete Kilian Fehre ein planares Molekül, die Ameisensäure. Dieses regte er mit einem intensiven, zirkular polarisierten Laserpuls an, um es in eine chirale Form zu überführen. Gleichzeitig zerbrach das Molekül durch die Bestrahlung in seine atomaren Bestandteile. Die Zerstörung des Moleküls war für das Experiment notwendig, um überprüfen zu können, ob die Bild- oder Spiegelbild-Variante entstanden war.
Für die Analyse verwendete Fehre das am Institut für Kernphysik entwickelte „Reaktionsmikroskop“ (COLTRIMS-Methode). Damit kann man einzelne Moleküle in einem Molekülstrahl untersuchen. Nach der explosionsartigen Zerlegung des Moleküls misst der Detektor mit hoher Genauigkeit, aus welcher Richtung und mit welcher Geschwindigkeit die Fragmente ankommen. So lässt sich die räumliche Struktur des Moleküls rekonstruieren.
Um künftig chirale Moleküle mit der gewünschten Händigkeit selektiv herstellen zu können, wird man gewährleisten müssen, dass die Moleküle im Verhältnis zum zirkular polarisierten Laserstrahl gleich orientiert ist. Das könnte man erreichen, indem man sie vorher mit einem langwelligen Laserlicht räumlich ausrichtet.
Die Erkenntnis könnte auch für die Herstellung größerer Mengen von Molekülen mit einheitlicher Händigkeit eine Schlüsselrolle spielen. Hier jedoch, vermuten die Forscher, würde man eher Flüssigkeiten als Gase mit Laserlicht bestrahlen. „Bis dahin jedoch ist noch viel Arbeit zu tun“, schätzt Kilian Fehre.
Nachweis und Manipulation chiraler Moleküle mittels Licht ist das Thema eines von der Deutschen Forschungsgemeinschaft seit 2018 geförderten Sonderforschungsbereiches mit dem griffigen Namen „ELCH“, zu dem sich Wissenschaftler aus Kassel, Marburg, Hamburg und Frankfurt zusammengeschlossen haben. „Diese langfristige Förderung und die enge Zusammenarbeit in dem Sonderforschungsbereich gibt uns den langen Atem, um in Zukunft Chiralität in einer großen Klasse von Molekülen steuern zu lernen“, freut sich Markus Schöffler, einer der Frankfurter Projektleiter des Sonderforschungsbereiches.
Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/76731281
Bildtext: Im Zentrum befindet sich das Modell der Ameisensäure. Der Farb-Code der ihr umgebenden Sphäre zeigt die mittlere Händigkeit der Ameisensäure für jede Richtung aus welcher der Laser kommt. Schießt man von der rechten Seite (rechter Pfeil), so erhält man die rechtshändige Ameisensäure, von der linken Seite, die Linkshändige Ameisensäure. Die beiden chiralen Ameisensäuren spiegeln die gemessene Struktur der Moleküle wider.
Kilian Fehre, Telefon: (069) 798-47004, fehre@atom.uni-frankfurt.de; Prof. Reinhard Dörner, Telefon: (069) 798-47003, doerner@atom.uni-frankfurt.de; Dr. Markus Schöffler, (069) 798-47022, schoeffler@atom.uni-frankfurt.de. Institut für Kernphysik, Fachbereich Physik, Campus Riedberg.
K. Fehre, S. Eckart, M. Kunitski, M. Pitzer, S. Zeller, C. Janke, D. Trabert, J. Rist, M. Weller, A. Hartung, L. Ph. H. Schmidt, T. Jahnke, R. Berger, R. Dörner und M. S. Schöffler: Enantioselective fragmentation of an achiral molecule in a strong laser field, in: Science Advances,
doi: 10.1126/sciadv.aau7923
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?
Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…
Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen
DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…
Mit Wearables die Gesundheit immer im Blick
Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…