Bildung und Reparatur der Myelinschicht um Nervenfasern erstmals „live“ untersucht

Fortsätze von Nervenzellen (Axone) sind von einer Myelinschicht umgeben. Das Video zeigt im Zeitraffer, wie sich Myelin um ein Axon bildet. (Bild: Czopka /TUM)

Die Myelinhülle um Fortsätze von Nervenzellen (Axone) lässt sich mit der Isolation um elektrische Kabel vergleichen. Myelin schirmt das Axon ab und macht eine schnelle Übertragung von elektrischen Signalen erst möglich. Wird die Isolierung beschädigt, beispielsweise bei Erkrankungen wie Multipler Sklerose, kann es zu schweren Ausfallerscheinungen kommen.

Myelinsegmente bestimmen Übertragungsgeschwindigkeit

Das Myelin bildet allerdings keinen durchgängigen Schlauch um das Axon, sondern ist in Segmente unterteilt. Diese können unterschiedlich lang sein und sind jeweils durch sogenannte Ranviersche Schnürringe voneinander getrennt. Im komplexen Netzwerk des Zentralnervensystems geht es nicht darum, alle Verbindungen so schnell wie möglich zu machen. Entscheidend ist vielmehr das Feintuning: Impulse müssen zum exakt richtigen Zeitpunkt am richtigen Ort sein. Wie schnell Informationen durch ein Axon übertragen werden, wird auch durch die Zahl und Länge der Segmente beeinflusst.

Muster bleiben stabil

Der Körper von Menschen und Tieren ist zumindest teilweise in der Lage, beschädigte Myelinhüllen zu reparieren. Dr. Tim Czopka, Neurowissenschaftler an der TUM, hat diesen Prozess erstmals „live“ beobachtet. Durch eigens entwickelte Markierungssubstanzen konnten er und sein Team sichtbar machen, wie Myelinsegmente um Axone im Rückenmark von Zebrafischen gebildet werden.

Dabei stellten sie fest: Charakteristische Muster mit unterschiedlich langen Myelinsegmenten entlang eines Axons werden innerhalb weniger Tage nach dem Beginn der Myelinbildung festgelegt. Danach wachsen die Segmente zwar weiterhin – schließlich wächst auch der Körper des Fisches – das Muster bleibt aber erhalten.

In einem nächsten Schritt zerstörten Tim Czopka und sein Team gezielt einzelne Segmente. „Dabei erlebten wir eine Überraschung“, sagt Czopka. „Nach der Zerstörung begann die Myelinschicht, sich dynamisch zu verändern. Am Ende war der Schaden repariert und das ursprüngliche Muster in den meisten Fällen wieder hergestellt.“ Der Wiederaufbau folgte einem festen Schema: Zunächst dehnten sich die benachbarte Segmente aus, wie um die Lücke zu schließen. Dann wuchs zwischen ihnen ein neues Segment und sie schrumpften wieder auf ihre ursprüngliche Größe zurück.

Axone beeinflussen Segmentbildung

Daraus ergibt sich eine wichtige Frage: Wer steuert Entstehung und Wiederherstellung des Segmentmusters? „Unsere Beobachtungen legen nahe, dass nicht die myelinbildenden Zellen, die Oligodendrozyten, sondern die Axone bestimmen, wo Myelin gebildet wird“, sagt Tim Czopka. „Man könnte sagen, dass sie am besten wissen, welches Muster für die ideale Übertragungsgeschwindigkeit benötigt wird.“

Derzeit erforschen er und sein Team, wie sich die Segmentmuster durch gezielt ausgelöste Nervenzellaktivität und dabei ausgeschüttete Botenstoffe verändern. „Wenn wir die Rolle der Axone bei der Myelinregeneration verstehen, könnten sich neue Ansätze ergeben, um sie zu steuern“, erläutert Czopka. „Das wäre beispielsweise für die Behandlung von Erkrankungen wie Multipler Sklerose relevant.“

Publikation:

F. Auer, S. Vagionitis, T. Czopka, “Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging”, Current Biology (2018). DOI: 10.1016/j.cub.2018.01.017.

Volltext (Open Access):
http://www.cell.com/current-biology/fulltext/S0960-9822(18)30019-8

Kontakt:

Dr. Tim Czopka
Technische Universität München
Institut für Zellbiologie des Nervensystems
Tel: +49 89 4140-3377
tim.czopka@tum.de

Mehr Informationen:

Dr. Tim Czopka leitet eine Emmy-Noether-Nachwuchsforschungsgruppe am Institut für Zellbiologie des Nervensystems der TUM. Das aktuelle Forschungsprojekt wurde von der Deutschen Forschungsgemeinschaft (DFG) finanziert. Seit 2016 fördert der Europäische Forschungsrat (ERC) Czopkas Forschung mit einem ERC Starting Grant. Tim Czopka ist Mitglied des Exzellenzclusters für Systemneurologie, SyNergy.

Profil Dr. Tim Czopka: https://www.professoren.tum.de/tum-junior-fellows/c/czopka-tim
Forschungsgruppe: https://www.czopka-lab.de/
Institut für Zellbiologie des Nervensystems: http://www.neuroscience.med.tum.de
Exzellenzclusters SyNergy: http://www.synergy-munich.de/index.html

Weitere Kurzvideos zur Studie

http://www.cell.com/action/showImagesData?pii=S0960-9822%2818%2930019-8 

Media Contact

Dr. Ulrich Marsch Technische Universität München

Weitere Informationen:

http://www.tum.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…