Bioökonomie: Von der WG ins Mikroben-Eigenheim

Mikroorganismen leben gerne in Biofilmen. In der Mikroskopaufnahme sind sie verschiedenfarbig markiert. (Foto: Ahmed Zoheir, KIT)

Mikroorganismen sind die ältesten, häufigsten und diversesten Lebensformen der Erde und bieten ein enormes Potenzial für biotechnologische Anwendungen. Bis heute konnte jedoch nur ein Bruchteil davon isoliert und kultiviert werden.

Das vom Bundesforschungsministerium mit 1,5 Millionen Euro geförderte Forschungsprojekt „MicroMATRIX“ will unter Federführung des Karlsruher Instituts für Technologie (KIT) mehr Licht ins Mikroben-Dunkel bringen, indem es eine Kultivierungspipeline für bisher nicht kultivierbare Mikroorganismen mit biotechnologischer Relevanz aus Umweltproben entwickelt.

„Mikroorganismen sind die Katalysatoren einer biobasierten Industrie und spielen bei vielen biotechnologischen Prozessen eine zentrale Rolle. Die Entwicklung unserer Gesellschaft hin zu einer nachhaltigen Bioökonomie macht es notwendig, etablierte Verfahren durch biotechnologische Prozesse zu ergänzen und zu ersetzen“, sagt Dr. Kersten Rabe vom Institut für Biologische Grenzflächen 1 des KIT, der das Projekt MicroMATRIX koordiniert. „Darüber hinaus können auf Basis biologischer Systeme neuartige biobasierte Materialien entwickelt werden. So lässt sich beispielsweise der Mangel an neuen Therapeutika in der Gesundheitsforschung beheben“, betont Rabe.

Noch viele weiße Flecken in der Mikroben-Welt

Trotz ihrer hohen Bedeutung werden Mikroorganismen auch heute noch völlig unzureichend erforscht und genutzt. Schätzungsweise 99 Prozent aller mikrobiellen Arten konnten bis jetzt nicht kultiviert werden. Der Grund hierfür: Sie können bisher nicht isoliert werden, da sie Teil von Konsortien verschiedener Mikroorganismen sind und häufig in Biofilmen in der Natur vorkommen. Darin leben viele Mikroorganismen in Gemeinschaft und bilden Schleimschichten, wie man sie beispielsweise auf Gesteinen in Gewässern findet. Die Mikroorganismen produzieren dabei eine sie umgebende „Matrix“, die neben dem Austausch von Nähr- und Botenstoffen eine große Rolle für die Struktur dieser „Wohngemeinschaften“ spielt. Ziel des Projektteams ist es, diese Faktoren technisch zu imitieren. So sollen bislang nicht kultivierbare, biotechnologisch vielversprechende Mikroorganismen im Labor vermehrt, charakterisiert und langfristig technologisch nutzbar gemacht werden.

Genetische Zielfahndung mit Perspektive auf gutes Wachstum

Im Projekt MicroMATRIX arbeiten daher Expertinnen und Experten aus Forschung und Industrie in den Bereichen der Bioinformatik, der Mikro- und Molekularbiologie, der Ingenieurwissenschaften und der Chemie zusammen und werden in den kommenden drei Jahren die nötigen Technologien und Verfahrensweisen entwickeln. Dabei werden mit Hilfe von Analysen der genetischen Informationen einer natürlich vorkommenden Mischung an Mikroorganismen einzelne biotechnologisch interessante Mikroorganismen identifiziert und die besten Bedingungen für ihr Wachstum vorhergesagt. „Insbesondere die sich rasant entwickelnden Methoden der Genomanalyse, beispielsweise die Einzelzellgenomik, helfen uns, die ‚Dunkle Materie‘ in der Welt der Mikroorganismen zu erforschen “, betont Professorin Anne-Kristin Kaster, Direktorin am Institut für biologische Grenzflächen 5 des KIT, die sich im Projektteam mit der bioinformatischen Identifikation und der gezielten Sortierung der Organismen befasst. Spezifische Organismen sollen gezielt fluoreszent markiert und so vom Rest der Gemeinschaft getrennt werden. Die gefärbten Organismen werden dann in speziellen Kultivierungssystemen abgelegt, wo sie unter optimalen Bedingungen wachsen können.

Über das Projekt MicroMATRIX

Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt MicroMATRIX (steht für Microbial cultivation based on Meta-omics Assisted, Targeted soRting and Isolation in a customized matriX) über drei Jahre mit 1,5 Millionen Euro. Am Projekt sind am KIT die Institute für biologische Grenzflächen 1 und 5 sowie das Institut für Angewandte Biowissenschaften beteiligt. Weitere Partner sind die Technische Universität Hamburg, die Universität Tübingen und die Freiburger Firma Cytena. Das Projekt ist im Juni gestartet. (rli)

Kontakt für diese Presseinformation:

Regina Link, Pressereferentin, Tel.: +49 721 608-41158, E-Mail: regina.link@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 23 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

Weitere Informationen:

http://www.micromatrix.de
https://www.materials.kit.edu/index.php Details zum KIT-Zentrum Materialforschung

Media Contact

Monika Landgraf Strategische Entwicklung und Kommunikation - Gesamtkommunikation
Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…