Biotinte basierend auf Spinnenseide: Neue Chancen für die regenerative Medizin
Zu diesem Ergebnis kommen Forschungsarbeiten, die aus einer engen Zusammenarbeit von Prof. Dr. Thomas Scheibel (Lehrstuhl für Biomaterialien, Universität Bayreuth) und Prof. Dr. Jürgen Groll (Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg) hervorgegangen sind.
„Biofabrikation“ ist der Name eines jungen Forschungsgebiets, das weltweit mit zunehmender Intensität bearbeitet wird. Es geht dabei insbesondere um die Produktion von gewebeähnlich aufgebauten Strukturen durch 3D-Drucktechniken. Solche Strukturen, wie sie für die Wiederherstellung von beschädigtem Gewebe benötigt werden, setzen sich aus zwei Bestandteilen zusammen: aus einem porösen Gerüst und aus lebenden Zellen, die sich in den Zwischenräumen dieses Gerüsts befinden.
Exzellente Eigenschaften der Spinnenseide ermöglichen einfache 3D-Verfahren
Bisher hat man derartige Strukturen hauptsächlich in konsekutiven Verfahren entwickelt. Dabei wird zunächst das Gerüst mit den gewünschten molekularen Strukturen vorgefertigt und anschließend mit lebenden Zellen „beladen“. Bei der Optimierung der Materialien, die als Gerüstmaterialien verwendet werden, konnten bisher deutliche Erfolge erzielt werden. Dennoch sind diese Verfahren nur eingeschränkt tauglich, um Zellen in den Gerüsten gezielt gewebeartig anzuordnen.
Erheblich vorteilhafter für solche medizinischen Anwendungen sind dreidimensionale Druckverfahren, bei denen Biotinte – bestehend aus den Bausteinen des Gerüsts und aus lebenden Zellen – zum Einsatz kommt. Bei der Entwicklung einer neuen Biotinte auf Basis von Spinnenseide ist dem Forschungsteam in Bayreuth und Würzburg nun ein entscheidender Durchbruch gelungen. Denn Spinnenseide hat keine zelltoxischen Wirkungen, wird nur langsam abgebaut und löst keine Immunreaktionen aus.
Vor allem aber konnte das Forschungsteam in Bayreuth und Würzburg nachweisen, dass eine Biotinte auf Basis von Spinnenseide allen anderen bisher getesteten Materialien überlegen ist. Ein Gel, in dem Spinnenseidenmoleküle und lebende Zellen gemischt sind, “fließt“ im Druckkopf des 3D-Druckers, so dass auch feine Gerüststrukturen auf einer Oberfläche aufgetragen werden können; hier aber verfestigt sich das Gel sofort. Der Grund für diesen blitzschnellen Wechsel von „flüssig“ zu „fest“ liegt darin, dass sich die Spinnenseidenmoleküle in ihrer Struktur umlagern – ein Mechanismus, den auch die Spinne bei der Faserproduktion nutzt.
Neue Perspektiven für die Wiederherstellung von Herzmuskel-, Nerven- oder Hautgewebe
Als lebende Zellen wurden zunächst Fibroblasten von Mäusen und anschließend – mit gleichbleibendem Erfolg – menschliche Zellen verwendet. „Die bisher erzielten Forschungsergebnisse machen uns deshalb zuversichtlich, dass sich durch den Einsatz von Spinnenseide als Biotinte langfristig völlig neue Perspektiven für die regenerative Medizin erschließen“, erklärt Prof. Dr. Thomas Scheibel.
„Es wäre beispielsweise möglich, Zellstrukturen zu züchten, die funktionsunfähiges Herzmuskelgewebe ersetzen. Und auch im Hinblick auf die Reparatur zerstörter Nervenbahnen oder Hautpartien zeichnen sich hochinteressante Möglichkeiten ab, die wir in unseren Forschungsarbeiten zur Biofabrikation weiter ausloten wollen.“
Prof. Dr. Jürgen Groll ergänzt: „Die Biofabrikation braucht dringend neue Biotinten mit variablen Eigenschaften, um funktionale Gewebestrukturen züchten zu können. Mit dem neuen 3D-Druckverfahren auf der Basis von Spinnenseide konnten wir das Forschungsfeld um eine vielversprechende Möglichkeit erweitern.“
Ein Baustein für das neue Bayerische Polymerinstitut
Die beiden Wissenschaftler sehen in ihren künftigen Forschungsarbeiten zur Biofabrikation einen vielversprechenden Baustein des künftigen Bayerischen Polymerinstituts (BPI), das auf engen Kooperationen zwischen den Universitäten Bayreuth, Erlangen-Nürnberg und Würzburg beruht und von der Bayerischen Staatsregierung im Rahmen ihres Nordbayern-Plans finanziert wird. Die jetzt in der „Angewandten Chemie“ publizierten Ergebnisse wurden von der Deutschen Forschungsgemeinschaft (DFG) sowie aus dem siebten Rahmenprogramm der Europäischen Union gefördert.
Veröffentlichung:
Kristin Schacht, Tomasz Jüngst, Matthias Schweinlin, Andrea Ewald, Jürgen Groll und Thomas Scheibel,
Dreidimensional gedruckte, zellbeladene Konstrukte aus Spinnenseide,
Angewandte Chemie (2015), doi: 10.1002/ange.201409846
Ansprechpartner:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de
Fotos zum Download von Prof. Dr. Thomas Scheibel (Universität Bayreuth)
und Prof. Dr. Jürgen Groll (Universität Würzburg):
http://www.uni-bayreuth.de/presse/images/2015/015
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Klimawandel führt zu mehr alpinen Gefahren
Von Steinschlag bis Eislawine: So hat der Klimawandel die Naturgefahren in den Alpen verändert. Der Klimawandel intensiviert vielerorts Naturgefahren in den Bergen und stellt den Alpenraum damit vor besondere Herausforderungen….
SAFECAR-ML: Künstliche Intelligenz beschleunigt die Fahrzeugentwicklung
Mit neuen Methoden des Maschinellen Lernens gelingt es, Daten aus der Crashtest-Entwicklung besser zu verstehen und zu verarbeiten. Im Projekt SAFECAR-ML entsteht eine automatisierte Lösung zur Dokumentation virtueller Crashtests, die…
Robotergestütztes Laserverfahren ermöglicht schonende Kraniotomie im Wachzustand
Um während neurochirurgischen Eingriffen komplexe Hirnfunktionen testen zu können, werden diese an wachen, lokal anästhesierten Patienten durchgeführt. So können die Chirurgen mit ihnen interagieren und prüfen, wie sich ihr Eingriff…