Bisher verkannte DNA-Sequenz

Professor Tomohisa Toda, Erlangen (links), und Professor Rusty Gage, La Jolla (rechts)
© Salk Institute

… als wichtiger Faktor bei der Entwickung des Gehirns identifiziert.

Ein internationales Forscherteam hat nachgewiesen, dass ein bisher kaum beachtetes, repetitives DNA-Element, das so genannte „Long Interspersed Nuclear Element“ (L1), zur Erhaltung neuronaler Vorläuferzellen (NPCs) beiträgt und damit eine wichtige Rolle bei der Entwicklung des Gehirns von Säugetieren spielt. Die Studie, die kürzlich in der Zeitschrift Cell Reports veröffentlicht wurde, wurde von Tomohisa Toda, Professor für Neuronale Epigenomik an der Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), die mit dem Max- Planck-Zentrum für Physik und Medizin, Erlangen, assoziiert ist, zusammen mit Professor Rusty Gage, PhD, vom Salk Institute, La Jolla, CA USA, angeleitet.

Das menschliche Genom liefert den grundlegenden Bau- und Schaltplan für die komplexe Entwicklung des Gehirns. Je nachdem, welche Gene „ein-“ oder „ausgeschaltet“ sind, vermehren sich Zellen und reifen gezielt zu Neuronen oder anderen Gehirnzellen heran. Ein komplexes Zusammenspiel genetischer und molekularer Faktoren, das noch nicht vollständig erforscht ist, sorgt dafür, dass die Zellen zur richtigen Zeit und am richtigen Ort entstehen, wandern und reifen.

Repetitive Elemente – also DNA-Sequenzen – die aus sich wiederholenden Abschnitten bestehen, machen mehr als die Hälfte des menschlichen Genoms aus. Eines der am häufigsten vorkommenden Elemente ist L1, das fast 20 % des Genoms von Mensch und Maus ausmacht. L1 sind Retrotransposons, d. h. sie können sich selbst an andere Stellen innerhalb der Chromosomen kopieren und einfügen und haben so zur Evolution der Säugetiergenome beigetragen. Repetitive Elemente wie L1 wurden früher als genomischer Müll betrachtet. Zellen unterdrücken L1 typischerweise, da eine unkontrollierte Expression zu genomischer Instabilität führen und die Expression benachbarter Gene negativ beeinflussen kann, was schließlich zu Krebs oder altersbedingten neurodegenerativen Erkrankungen führen kann.

Im Gegensatz zu den bisherigen Erkenntnissen haben Toda, Gage und ihr Team nun gezeigt, dass die Expression dieses sich wiederholenden Elements für die Gehirnentwicklung entscheidend ist. Mit Hilfe komplexer genetischer Experimente, die Tier- und menschliche Stammzellmodelle kombinierten, zeigten die Wissenschaftler, dass das Unterdrücken von L1 eine frühe neuronale Differenzierung auslöst. Im Gegensatz dazu verhinderte die Verstärkung der L1-Expression die frühe Differenzierung in neuronale Vorläuferzellen. Die Ergebnisse deuten auch darauf hin, dass L1 möglicherweise als epigenetischer Faktor zur Regulierung neuronaler Vorläuferzellen dient.

„Aktiv transkribierende mobile L1-Elemente galten lange Zeit als gefährlich oder schädlich für die Zellen, die sie exprimieren“, so Gage. „Unsere Studie belegt, dass diese evolutionär gesehen sehr alten genetischen Elemente so angepasst wurden, dass sie eine positive Rolle bei der neuronalen Entwicklung spielen.“ Toda fügt hinzu: „In Zukunft könnte das Verständnis, wie L1 die NPCs reguliert, Aufschluss darüber geben, wie sich das menschliche Gehirn entwickelt hat und wie L1 zur pathophysiologischen Entwicklung bei Hirnerkrankungen beiträgt.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Tomohisa Toda / Division ›Neural Epigenomics‹
Friedrich-Alexander-Universität Erlangen-Nürnberg
www.fau.de / tomohisa.toda@fau.de

Prof. Rusty Gage, PhD
Laboratory of Genetics
Salk Institute for Biological Studies
www.salk.edu / gage@salk.edu

Originalpublikation:

Originalpublikation in Cell Reports
Toda et al., Long interspersed nuclear elements safeguard neural progenitors from precocious differentiation, Cell Reports (2024)

DOI: https://doi.org/10.1016/j.celrep.2024.113774

http://www.mpl.mpg.de

Media Contact

Edda Fischer Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…