Brennstoffzelle: Schutz für sensible Katalysatoren
Preiswerte Brennstoffzellen werden jetzt greifbarer. Denn ein internationales Forscherteam ist dem Ziel näher gekommen, das teure und seltene Platin, das Brennstoffzellen heute als Katalysator benötigen, durch Enzyme, genauer gesagt Hydrogenasen, zu ersetzen. Diese Bio-Katalysatoren können wie Platin die Umsetzung von Wasserstoff vermitteln, werden jedoch von Sauerstoff zerstört.
Wissenschaftler des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr und der Ruhr-Universität Bochum haben nun eine besonders empfindliche Hydrogenase mit einem Hydrogel vor Sauerstoff geschützt.
Darüber hinaus klärten die Forscher gemeinsam mit Kollegen der Universität Aix Marseille und des Centre National de la Recherche Scientifique (CNRS) in Frankreich genau auf, wie der Schutzmechanismus funktioniert. Die Erkenntnisse vereinfachen die Entwicklung von Katalysatoren.
Ohne Katalysatoren läuft in der Chemie wenig: Sie vermitteln zwischen Reaktionspartnern und erleichtern so viele chemische Umsetzungen oder machen sie erst möglich. Katalysatoren für die industrielle Nutzung werden aber nicht nur für eine ganz bestimmte Reaktion maßgeschneidert, sie müssen auch effizient, stabil und preisgünstig sein.
„Diese Anforderungen in einem Molekül zu kombinieren ist eine große Herausforderung“, sagt Nicolas Plumeré, Chemiker an der Ruhr-Universität Bochum. Manche vielversprechende Katalysatoren schaffen es daher nicht in die Anwendung, weil sie nicht alle nötigen Eigenschaften mitbringen. Zumindest in puncto Stabilität können Chemiker künftig aber Abstriche in Kauf nehmen. Denn Katalysatoren lassen sich mit einem Hydrogel schützen, wie die Forscher der Ruhr-Universität Bochum und des Max-Planck-Institut für Chemische Energiekonversion in Mülheim nun an einem besonders empfindlichen Katalysator demonstrieren.
Hydrogel wirkt als Lösungsmittel und schützende Umgebung
In den Versuchen, deren Konzept die Forscher bereits in einer vorangegangenen Arbeit vorstellten, arbeitete das Team mit dem Enzym Hydrogenase aus der Grünalge Chlamydomonas rheinhardtii; es spaltet Wasserstoff in Protonen und Elektronen. Normalerweise reichen kleinste Mengen Sauerstoff aus, um das Biomolekül irreversibel zu schädigen. Die Wissenschaftler betteten es jedoch in ein Hydrogel ein, das zwei Funktionen übernimmt: Es dient als Lösungsmittel und sorgt dafür, dass alle Reaktionspartner schnell und leicht zum Enzym gelangen.
Gleichzeitig bietet es eine schützende Umgebung, in der Sauerstoff nicht zum Enzym vordringen kann, auch wenn er in relativ hohen Konzentrationen vorliegt. Der Trick: Bei der Arbeit der Hydrogenase entstehen Elektronen; sie wandern durch das Hydrogel und werden am Rand des Hydrogels auf den Sauerstoff übertragen, wodurch dieser in eine unschädliche Form – nämlich in Wasser – umgewandelt wird und nicht mehr zu dem empfindlichen Katalysator vordringt. Die Details dieses Mechanismus untersuchten die Forscher gemeinsam mit Kollegen der Universität Aix Marseille und des CNRS. Die Erkenntnisse dieser Untersuchungen könnten helfen, den Schutz durch Hydrogele zu verbessern und an diverse empfindliche Katalysatoren anzupassen.
Katalysatordesign könnte in Zukunft bedeutend einfacher werden
Mit Simulationen und Experimenten wies das deutsch-französische Team noch eine weitere wichtige Eigenschaft des Hydrogels nach. Die Aktivität einiger Katalysatoren lässt mit der Zeit nach; manche können über spezielle Prozesse wieder funktionstüchtig gemacht werden, für andere Katalysatoren gibt es keinen solchen Reaktivierungsmechanismus. Das Hydrogel schützt aber auch vor dem Verlust der Aktivität, und zwar selbst bei solchen Katalysatoren, für die es keinen Reaktivierungsprozess gibt.
„In Zukunft muss man bei der Entwicklung von Katalysatoren für technische Anwendungen also nicht mehr auf ihre Robustheit oder passende Reaktivierungsprozesse achten“, erklärt Olaf Rüdiger, Chemiker am Max-Planck-Institut für Chemische Energiekonversion. „Man kann sich einzig und allein darauf konzentrieren, die Aktivität des Katalysators zu maximieren. Das vereinfacht den Entwicklungsprozess sehr und eröffnet neue Möglichkeiten für die Herstellung von Brennstoffzellen.“
Förderung
Die Deutsche Forschungsgemeinschaft förderte das Projekt im Rahmen des Exzellenzcluster RESOLV (EXC 1069). Das französische Teilprojekt wurde unterstützt von „L'Agence Nationale de la Recherche“ und dem „A*MIDEX“-Projekt „MicrobioE“ des Programms „Investissements d’Avenir“ der französischen Regierung.
Ansprechpartner
Dr. Olaf Rüdiger
Max-Planck-Institut für chemische Energiekonversion, Mülheim an der Ruhr
Telefon: +49 208 306-3526
E-Mail: olaf.ruediger@cec.mpg.de
Originalpublikation
Alsheikh Oughli, Felipe Conzuelo, Martin Winkler, Thomas Happe, Wolfgang Lubitz, Wolfgang Schuhmann, Olaf Rüdiger und Nicolas Plumeré
Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel
Angewandte Chemie International Edition, 12. Juni 2015; DOI: 10.1002/anie.201502776R1
Vincent Fourmond, Stefanie Stapf, Huaiguang Li, Darren Buesen, James Birrell, Olaf Rüdiger, Wolfgang Lubitz, Wolfgang Schuhmann, Nicolas Plumeré und Christophe Legér
The mechanism of protection of catalysts supported in redox hydrogel films
Journal of the American Chemical Society, 2. April 2015; DOI: 10.1021/jacs.5b01194
Media Contact
Weitere Informationen:
http://www.mpg.de/9287454/hydrogel-katalysator-brennstoffzelleAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…