Chemiker nutzen Lichtenergie zum Aufbau biologisch aktiver Verbindungen
Viele biologisch hochaktive Moleküle, darunter synthetische Medikamente, zeichnen sich durch eine zentrale, stickstoffhaltige chemische Struktur aus. Diese Struktur, Isochinuclidin genannt, hat eine dreidimensionale Form – wodurch sie besser mit Enzymen und Proteinen interagieren kann als flache, zweidimensionale Moleküle.
Bisher gibt es jedoch kaum geeignete Methoden, um Isochinuclidine herzustellen – was es Wissenschaftlern auch erschwert, neue Arzneimittel dieser Art zu entdecken. Chemiker um Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt eine neue Methode veröffentlicht, um genau diese Art von Reaktion zu ermöglichen. Die Studie ist in der Fachzeitschrift „Chem“ erschienen.
Hintergrund und Methode:
Bei einer Reihe von Methoden zur Herstellung dreidimensionaler Strukturmotive addieren Chemiker ein weiteres Molekül an ein flaches Ausgangsmolekül. Die internen Bindungen beider Moleküle werden so reorganisiert, dass neue Bindungen zwischen ihnen gebildet werden – eine chemische Reaktion, die man als Cycloaddition bezeichnet.
Das Problem: Bei Isochinuclidinen besteht eine hohe Energiebarriere für eine solche Cycloaddition, da das flache Ausgangsmolekül, ein Pyridin, sehr stabil ist: Selbst mittels intensiver Wärmezufuhr kann die Reaktion nicht stattfinden.
Bei der neu entwickelten Methode überträgt ein speziell hierfür entwickelter Photokatalysator Lichtenergie von blauen LEDs auf ein Substrat, um eine Kohlenstoff-Kohlenstoff-Doppelbindung im Molekül in einen hochenergetischen Zustand zu versetzen.
Dieses angeregte Molekül ist daraufhin in der Lage, mit einem nahegelegenen Pyridin als Ausgangsmolekül zu reagieren, wodurch ein sogenanntes Dehydroisochinuclidin entsteht. Die Wissenschaftler zeigten 44 Beispiele für diese Verbindungen, die anschließend in Isochinuclidine und andere nützliche Strukturen umgewandelt werden konnten.
Eine weitere Besonderheit der Studie ist die Recyclingfähigkeit des Photokatalysators: Er kann mehr als zehnmal wiederverwendet werden, ohne dass seine Aktivität beeinträchtigt wird. Um im Detail zu verstehen, wie die Reaktion funktioniert und warum ausschließlich die gewünschten Produkte entstehen, führten die Wissenschaftler weitere Experimente mithilfe computergestützter Berechnungen durch.
„Wir hoffen, dass diese Studie nicht nur dazu beitragen wird, den Bereich der sogenannten 'Energietransfer-Katalyse' intensiver zu erforschen, sondern dass dadurch auch die Entwicklung neuer Wirkstoffmoleküle beschleunigt werden kann“, betont Dr. Jiajia Ma, Erstautor der Studie.
Förderung:
Die Studie erhielt finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft (Leibniz Award, Schwerpunktprogramm 2102 und Sonderforschungsbereich 858) und die Alfried-Krupp-von-Bohlen-und-Halbach-Stiftung.
Prof. Dr. Frank Glorius (Westfälische Wilhelms-Universität Münster)
glorius@uni-muenster.de
Tel: +49 251 8333248
J. Ma et al. (2019): Direct Dearomatization of Pyridines via an Energy-Transfer-Catalyzed Intramolecular [4+2] Cycloaddition. Chem; DOI: 10.1016/j.chempr.2019.10.016
https://www.cell.com/chem/fulltext/S2451-9294(19)30470-X Originalpublikation in „Chem“
https://www.uni-muenster.de/Chemie.oc/glorius/index.html WWU-Forschergruppe Prof. Frank Glorius
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…