Chirale Überraschung im Regenwald

Kürzlich entdeckten Wissenschaftler im Amazonas-Regenwald, dass sich das Verhältnis der beiden chiralen Formen von α-Pinen umkehrt. Für Nora Zannoni und ihre Kollegen kommen Termitennester als Emissionsquelle in Frage.

Nora Zannoni
MPI für Chemie

Das wechselnde Verhältnis chiraler flüchtiger organischer Verbindungen im Amazonas-Regenwald deutet auf Insekten als bedeutende Quelle hin.

Wälder wie der Amazonas-Regenwald geben große Mengen biogener flüchtiger organischer Verbindungen (BVOC) an die Atmosphäre ab. Diese Verbindungen beeinflussen die physikalischen und chemischen Eigenschaften der Atmosphäre und auch unser Klima. Die Moleküle reagieren schnell mit OH-Radikalen und Ozon und beeinflussen so die Oxidationskapazität der Atmosphäre, die mit dieser Eigenschaft Schadstoffe wie Kohlenmonoxid und Treibhausgase wie Methan abbaut. Darüber hinaus sind BVOC Vorläufer für sekundäre organische Aerosole, die das Strahlungsbudget der Erde beeinflussen.

Viele BVOC wie α-Pinen sind chiral. Das bedeutet, dass sie – vergleichbar mit rechter und linker Hand – in zwei nicht überlagerbaren Spiegelbildformen vorkommen. Wissenschaftler sprechen von Enantiomeren bzw. einer Plus- und einer Minus-Form. Alle anderen physikalische Eigenschaften wie ihr Siedepunkt, ihre Masse und ihre Abbaurate sind jedoch identisch.

Obwohl Insekten und Pflanzen zwischen Plus- zu Minus-Form zum Beispiel bei Pheromonen und Pflanzenabwehrstoffe unterscheiden können, maß man dem Mischungsverhältnis der beiden Formen in Wäldern bisher wenig Bedeutung bei. Wissenschaftler vom Max-Planck-Institut für Chemie, der Johannes Gutenberg-Universität Mainz und aus Brasilien haben nun jedoch eine interessante Entdeckung gemacht: Entlang des 325-Meter hohen Messturms ATTO im Amazonas-Regenwald konnten sie zeigen, dass das vertikale Verhältnis der Enatiomere um den Faktor zehn variiert. Das Team um die Max Planck-Forscherin Nora Zannoni konnte zudem nachweisen, dass die Konzentrationen höhenabhängig sind und im Tagesverlauf sowie im Wechsel von Trocken- zu Regenzeit variieren.

Während plus α-Pinen zu allen Tageszeiten auf 40 Metern und nachts auf 80 Metern dominiert, überwiegt die Minusform tagsüber ab 80 Metern und höher. Die Wissenschaftler beobachteten auch, dass die minus α-Pinen-Konzentration in 80 Metern temperaturabhängt ist, die plus α-Pinen-Menge jedoch nicht.

„Die Fotosyntheserate der Vegetation hängt von der Temperatur und den Spaltöffnungen der Blätter ab. Beide treiben die Emissionen von minus α-Pinen an. Das bedeutet, dass die Blätter die Hauptemissionsquelle dieses Isomers sind und dass die beiden Isomere auf unterschiedlichen Wegen aus den Blättern freigesetzt werden“, sagt Zannoni, Erstautorin einer Studie, die vor Kurzem im Fachmagazin „Communications Earth & Environment“ erschienen ist.

Termiten als unbekannte Quelle von plus α-Pinen in den Baumkronen?

Während der Trockenzeit kehrte sich das chirale Verhältnis der beiden Formen bei 80 Metern um. „Dies deutet auf eine starke, nicht charakterisierte Quelle von plus α-Pinen in den Baumkronen hin“, sagt Jonathan Williams, wissenschaftlicher Gruppenleiter am Max-Planck-Institut in Mainz und Letztautor der Studie.

Die Forscher konnten atmosphärische Senken wie den chiral-selektiven Abbau von Pinen durch OH-Radikale und Ozon oder die Ablagerung auf Aerosolen sowie den Einfluss von Windrichtung und Sonnenlicht ausschließen. Daher vermuten sie, dass Stress wie Pflanzenfraß und Emissionen von Termiten für die höheren Werte von plus α-Pinen verantwortlich sind.

Um den möglichen Einfluss von Insekten zu testen, führten die Forscher zusätzlich Messungen über Termitennestern durch. Die Untersuchungen bestätigten, dass die Emissionen der Termiten das chirale Mengenverhältnis von α-Pinen in der Umgebungsluft umkehren können. Für die Forscher steht fest, dass der Einfluss von Termiten in Modellen, die die Waldemissionen und die chemischen Signalwege abbilden, berücksichtigt werden muss. Denn mit fortschreitender Entwaldung und Klimaerwärmung werden Termitenpopulationen voraussichtlich erheblich zunehmen.

„Wir wissen auch, dass Pflanzen bei Verletzung und Fraß große Mengen an plus α-Pinen freisetzen können“, fügt Williams hinzu. So konnte man bei Messungen flüchtiger Verbindungen sogar zeigen, wann die Pflanzenfresser am aktivsten waren.

Die Atmosphärenchemiker Zannoni und Williams wollen in Simulationsmodellen nicht nur die Emissionen flüchtiger organischer Verbindungen aus den Baumkronen überdenken. Man müsse vielmehr auch das gesamte Ökosystem berücksichtigen.

Die Forschungsarbeiten wurden vom H2020-Projekt „ULTRACHIRAL“ der Europäischen Union mitfinanziert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jonathan Williams
Max-Planck-Institut für Chemie
Telefon: +49 6131 3054500
E-Mail: jonathan.williams@mpic.de

Originalpublikation:

Surprising chiral composition changes over the Amazon rainforest with height, time and season
Nora Zannoni, Denis Leppla, Pedro Ivo Lembo Silveira de Assis, Thorsten Hoffmann, Marta Sá, Alessandro Araújo and Jonathan Williams
Communications Earth & Environment, 1:4, 2020; doi: 038/s43247-020-0007

Weitere Informationen:

https://www.mpic.de/4727783/chiral-surprise

http://www.mpic.de/

Media Contact

Dr. Susanne Benner Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…