Dem Konzentrationsgefälle auf der Spur

Alena Bell und Jonas Kind in der NMR-Halle beim Vorbereiten der Versuche, um den Probenkopf für die NMR-Versuche zu befüllen.
Bild: Alexander Erb

Team der TU Darmstadt nutzt Raman- und NMR-Spektroskopie für Messungen.

Wie verhalten sich Stoffe in Flüssigkeitsgemischen bei der Verdunstung und wie lassen sich Verdunstungsprozesse besser steuern? Zur Klärung dieser Fragen leistete ein Team der TU Darmstadt nun einen wichtigen Beitrag: Den Wissenschaftlerinnen und Wissenschaftlern gelang es erstmals, unterschiedliche Stoffkonzentrationen in Gemischen berührungsfrei nachzuweisen. Die Ergebnisse ihrer Forschung veröffentlichten sie nun im renommierten Fachjournal „Proceedings of the National Academy of Sciences“ (PNAS).

Die Verdunstung von Tropfen aus Flüssigkeitsgemischen spielt eine große Rolle in vielen technischen Anwendungen. Wenn wir zum Beispiel eine Wand streichen oder Papier bedrucken, müssen die flüssigen Bestandteile der Farbe verdunsten, während die festen Farbpartikel an der Wand oder dem Papier haften bleiben. Um solche technischen Prozesse besser steuern zu können, verwendet man oft Flüssigkeitsgemische, wobei die einzelnen Flüssigkeiten oft unterschiedlich schnell verdunsten.

Das Mischungsverhältnis nach Auftragen der Tropfen verändert sich deshalb mit der Zeit durch die Verdunstung. Durch diese Transportvorgänge entstehen in den Tropfen Konzentrationsgradienten – also ein Gefälle von Regionen mit unterschiedlich hoher Konzentration. Diese waren bisher schwer nachzuweisen.

Das Problem: Eine Messung der Konzentration während der Verdunstung war nicht möglich, ohne dass der Prozess durch die Untersuchungsmethode selbst oder durch Markierungspartikel beeinflusst wurde. Forschende des Sonderforschungsbereichs (SFB) 1194 wählten einen anderen Weg: Ihnen ist es jetzt erstmals gelungen, solche Konzentrationsgradienten berührungsfrei mit Hilfe ortsaufgelöster Kernspinresonanz- (NMR) und Ramanspektroskopie nachzuweisen. Da die Messungen berührungsfrei erfolgen und auch keine chemischen Markersubstanzen dazugegeben werden müssen, konnte das Verdunstungsverhalten weitgehend ohne Störung durch den Messprozess untersucht werden.

Die Gemischkonzentration im Tropfen wurde dazu unabhängig voneinander mit zwei Messmethoden untersucht, die auf unterschiedlichen physikalischen Prinzipien beruhen: Bei der NMR-Spektroskopie wird die magnetische Kernresonanz in einem starken Magnetfeld untersucht, während bei der konfokalen Ramanspektroskopie die Molekülschwingungen mit Hilfe eines Lasers gemessen werden. Dafür untersuchte das Team ein Modellgemisch aus zwei Alkoholen unterschiedlicher Kettenlängen.

In der gerade erschienenen PNAS-Publikation (https://doi.org/10.1073/pnas.2111989119) zeigten die beteiligten Wissenschaftler*innen um Alena Bell und Jonas Kind vom Fachbereich Material- und Geowissenschaften , sowie dem Fachbereich Chemie der TU Darmstadt, wie sich im Tropfen ein Konzentrationsgradient ausbildet, der sich mit der Zeit durch Verdunstung verändert. Mit den beiden ortsaufgelösten Spektroskopiemethoden, die hier erfolgreich zum Einsatz kamen, stehen zwei unabhängige Werkzeuge zur Verfügung, mit denen Konzentrationsänderungen in Flüssigkeiten gemessen werden können, wie sie etwa durch Verdunstungs- und Transportvorgänge hervorgerufen werden.

Die Ergebnisse der Forschung von Bell und Kind stellen einen wichtigen Beitrag zur Grundlagenforschung dar. Praktisch könnten sie einmal auf allgemeine Messungen von chemisch ähnlichen Substanzen oder beispielsweise auf „Lab-on-a-chip“-Anwendungen in der Medizin übertragen werden.

Die Publikation in PNAS ist das Ergebnis der Kooperation von fünf Teilprojekten des Sonderforschungsbereiches SFB 1194 „Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen“. Vier dieser Teilprojekte sind an der TU Darmstadt angesiedelt, ein Teilprojekt war am Max-Planck-Institut für Polymerforschung in Mainz lokalisiert und ist nun am Leibniz-Institut für Polymerforschung in Dresden. Der Sonderforschungsbereich wird seit 2016 von der Deutschen Forschungsgemeinschaft gefördert.

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter.

www.tu-darmstadt.de

MI-Nr. 24/2022, Bell/Kind/Thiele/Stark/sip

Originalpublikation:

Concentration gradients in evaporating binary droplets probed by spatially resolved Raman and NMR spectroscopy
https://doi.org/10.1073/pnas.2111989119

Weitere Informationen:

https://www.sfb1194.tu-darmstadt.de/ Sonderforschungsbereich 1194 „Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen“

https://www.tu-darmstadt.de/universitaet/aktuelles_meldungen/einzelansicht_361920.de.jsp

Media Contact

Silke Paradowski Stabsstelle Kommunikation und Medien
Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…