Direkte Abbildung magnetischer Molekülorbitale gelungen
Dafür wurden Einzelmolekülmagnete untersucht, die in der Lage sind, die Richtung ihres magnetischen Moments, dem sogenannten Spin, zeitlich stabil zu halten. Man kann sich jedes dieser Moleküle wie einen kleinen Magneten vorstellen, mit denen sich neue magnetische Nanostrukturen konstruieren lassen. Diese könnten zukünftig noch kleinere Computerbausteine ermöglichen. Besonders für den Bau von Quantencomputern besitzen diese molekularen Magnete ein sehr hohes Potential.
Abbildung 1 zeigt die Anordnung des Experiments mit einem einzelnen, flach auf einer magnetischen Oberfläche liegenden Moleküls. Eine atomar scharfe magnetische Spitze eines Rastertunnelmikroskops wird dazu verwendet, den magnetischen Zustand des Moleküls bei verschiedenen Energien abzutasten und damit eine spinaufgelöste Abbildung verschiedener Molekülorbitale zu ermöglichen.
Abbildung 2 gibt das Resultat des Experiments wider: Die räumliche Spindichteverteilung einzelner Molekülorbitale kann direkt visualisiert werden. Blaue Färbung steht dabei für parallel, rote für antiparallel zur Magnetisierung der Oberfläche ausgerichtete Spinzustände des Moleküls. Die beiden Bilder zeigen die Spindichteverteilung bei zwei verschiedenen Energien.
Die Beobachtung einer verschiedenen Spinausrichtung bei verschiedenen Energien bedeutet, dass es leichter ist demselben Molekülorbital ein Elektron mit antiparallel zur Oberfläche ausgerichtetem Spin hinzuzufügen als ein Elektron mit entgegengesetztem Spin. Diese Ergebnisse veranschaulichen erstmals, dass bei den untersuchten Einzelmolekülmagneten das gesamte Molekül, und nicht nur das zentrale Metallatom, magnetisch ist.
Original Veröffentlichung:
„Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets”,
J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, and R. Wiesendanger,
Nature Communications 3 953 (2012).
DOI: 10.1038/ncomms1953
Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Sonderforschungsbereich 668
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 – 69 59
Fax: (0 40) 4 28 38 – 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de
Weitere Informationen:
http://www.sfb668.de
http://www.nanocience.de
http://www.nanoscience.de/furore
http://www.nanoscience.de/lexi
Media Contact
Weitere Informationen:
http://www.uni-hamburg.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…